摘要
Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to two issues:Both the hyperparameter and ar-chitecture should be optimised and the optimisation process is computationally expen-sive.To tackle these two issues,this paper focusses on solving the hyperparameter and architecture optimization problem for the NN and proposes a novel light‐weight scale‐adaptive fitness evaluation‐based particle swarm optimisation(SAFE‐PSO)approach.Firstly,the SAFE‐PSO algorithm considers the hyperparameters and architectures together in the optimisation problem and therefore can find their optimal combination for the globally best NN.Secondly,the computational cost can be reduced by using multi‐scale accuracy evaluation methods to evaluate candidates.Thirdly,a stagnation‐based switch strategy is proposed to adaptively switch different evaluation methods to better balance the search performance and computational cost.The SAFE‐PSO algorithm is tested on two widely used datasets:The 10‐category(i.e.,CIFAR10)and the 100−cate-gory(i.e.,CIFAR100).The experimental results show that SAFE‐PSO is very effective and efficient,which can not only find a promising NN automatically but also find a better NN than compared algorithms at the same computational cost.
基金
supported in part by the National Key Research and Development Program of China under Grant 2019YFB2102102
in part by the National Natural Science Foundations of China under Grant 62176094 and Grant 61873097
in part by the Key‐Area Research and Development of Guangdong Province under Grant 2020B010166002
in part by the Guangdong Natural Science Foundation Research Team under Grant 2018B030312003
in part by the Guangdong‐Hong Kong Joint Innovation Platform under Grant 2018B050502006.