摘要
为减少弯道段交通事故,对山区公路视线诱导设施综合效用进行研究.在弯道段单独或组合设置护栏、轮廓标、线形诱导标3类视线诱导设施,并基于驾驶模拟器、眼动仪和脑电仪获取眼动、脑电及驾驶行为数据,分析不同设置方案下驾驶人的行为特性.基于超效率BCC-DEA模型,构建山区公路弯道视线诱导设施有效性评价体系,对不同设置方案的综合效果进行评价.结果表明:视线诱导设施组合设置对驾驶行为的影响比单独设置效果更好,其中采用“线形诱导标+轮廓标”设置效果最优;视线诱导设施设置数量超过2个时会降低警示与诱导效果;指标敏感性分析表明,速度和横向位移指标分别是单独与组合设置时影响安全过弯的关键因素.
A study on the comprehensive efficiency of sight guidance facilities on mountain highways was done to lower traffic accidents in curved portions.At the curve portion,three different types of sight guidance facilities—guardrails,contour markers,and linear guidance markers—are arranged singly or in combination.Eye movement,EEG,and driving behavior data are collected based on driving simulators,eye trackers,and EEG devices to assess the behavioral traits of drivers in various setup schemes.An effectiveness evaluation method for sight guidance facilities in mountain highway curves is built based on the super efficient BB C-DEA model to assess the full effects of various setup schemes.The results demonstrate that the combination of sight guidance facilities has a greater influence on driving behavior than the individual settings,with the“linear guidance signs+contour signs”group having the greatest impact.When there are more than two sight guiding facilities,the effectiveness of their warning and direction will be diminished.Sensitivity analysis of indicators also reveals that speed and lateral movement indicators are important variables influencing safe turning,whether they are set separately or in combination.
作者
杨艳群
黄永
姚羽珊
郑新夷
YANG Yanqun;HUANG Yong;YAO YuShan;ZHENG Xinyi(College of Civil Engineering,Fuzhou University,Fuzhou 350116,China;Joint International Research Laboratory on Traffic Psychology&Behaviors,Fuzhou University,Fuzhou 350116,China;School of Humanities and Social Sciences,Fuzhou University,Fuzhou 350116,China)
出处
《交通工程》
2024年第3期1-9,共9页
Journal of Transportation Engineering
基金
福建省科学技术协会科技创新智库课题(FJKX-2022XKB039)。
关键词
山区公路弯道
视线诱导设施
驾驶模拟
数据包络分析
超效率分析
mountain highway
sight guidance facilities
driving simulation
data envelopment analysis
super-efficiency analysis