期刊文献+

Multiple Data Augmentation Strategy for Enhancing the Performance of YOLOv7 Object Detection Algorithm 被引量:2

下载PDF
导出
摘要 The object detection technique depends on various methods for duplicating the dataset without adding more images.Data augmentation is a popularmethod that assists deep neural networks in achieving better generalization performance and can be seen as a type of implicit regularization.Thismethod is recommended in the casewhere the amount of high-quality data is limited,and gaining new examples is costly and time-consuming.In this paper,we trained YOLOv7 with a dataset that is part of the Open Images dataset that has 8,600 images with four classes(Car,Bus,Motorcycle,and Person).We used five different data augmentations techniques for duplicates and improvement of our dataset.The performance of the object detection algorithm was compared when using the proposed augmented dataset with a combination of two and three types of data augmentation with the result of the original data.The evaluation result for the augmented data gives a promising result for every object,and every kind of data augmentation gives a different improvement.The mAP@.5 of all classes was 76%,and F1-score was 74%.The proposed method increased the mAP@.5 value by+13%and F1-score by+10%for all objects.
出处 《Journal on Artificial Intelligence》 2023年第1期15-30,共16页 人工智能杂志(英文)
基金 the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University.
  • 相关文献

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部