期刊文献+

人工智能心电图协助诊断晕厥原因探索

Exploration of Artificial Intelligence Electrocardiogram to Assist in Diagnosing the Causes of Syncope
下载PDF
导出
摘要 心电图记录和分析心动周期的电活动变化,对识别晕厥的潜在病因具有重要提示作用。人工智能赋能的心电图(AI-ECG)在晕厥的病因诊断和风险预测等方面展现出不容忽视的巨大潜力。基于AI-ECG表型的临床决策评分已被开发用于晕厥的病因诊断,AI-ECG对晕厥风险分层和临床管理的影响正在不断显现。 Electrocardiogram(ECG)recording and analysis of the changes of electrical activity in the cardiac cycle is of great significance for identifying the potential causes of syncope.Artificial intelligence-enabled electrocardiogram(AI-ECG)has shown great potential in diagnosing the etiology and predicting the risk of syncope.Clinical decision scores based on the AI-ECG phenotype have been developed to assist in the etiological diagnosis of syncope,and the impact of AI-ECG on the stratification and clincial management of syncope risk is emerging.
作者 刘彤 高欣怡 李歆慕 LIU Tong;GAO Xin-yi;LI Xin-mu(Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease,Department of Cardiology,Tianjin Institute of Cardiology,The Second Hospital of Tianjin Medical University,Tianjin 300211,China)
出处 《中国心血管病研究》 CAS 2024年第3期203-206,共4页 Chinese Journal of Cardiovascular Research
基金 国家自然科学基金面上项目(82170327)。
关键词 晕厥 人工智能 心电图 诊断 Syncope Artificial intelligence Electrocardiogram Diagnosis
  • 相关文献

参考文献5

二级参考文献10

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部