期刊文献+

融合无监督和有监督学习的虚假数据注入攻击检测

Detection method of false data injection attack based on unsupervised and supervised learning
下载PDF
导出
摘要 虚假数据注入攻击(false data injection attack,FDIA)是智能电网安全与稳定运行面临的严重威胁。文中针对FDIA检测中存在的有标签数据稀少、正常和攻击样本极不平衡的问题,提出了融合无监督和有监督学习的FDIA检测算法。首先引入对比学习捕获少量攻击数据特征,生成新的攻击样本实现数据扩充;然后利用多种无监督检测算法对海量的无标签样本进行特征自学习,解决有标签样本稀缺的问题;最后将无监督算法提取的特征与历史特征集进行融合,在新的特征空间上构建有监督XGBoost分类器进行识别,输出正常或异常的检测结果。在IEEE 30节点系统上的算例分析表明,与其他FDIA检测算法相比,文中方法增强了FDIA检测模型在有标签样本稀少和数据不平衡情况下的稳定性,提升了FDIA的识别精度并降低了误报率。 False data injection attack(FDIA)is a serious threat to the security and stable operation of smart grids.In this paper,a FDIA detection algorithm that combines unsupervised and supervised learning is proposed,solving the problems of scarce labeled data and extremely imbalanced normal and attack samples.Firstly,contrastive learning is introduced to capture the features of a small amount of attack data,and it generates new attack samples to achieve data augmentation.Then,various unsupervised detection algorithms are used to perform feature self-learning on a large number of unlabeled samples,addressing the problem of scarce labeled samples.Finally,the features extracted by the unsupervised algorithm are fused with the historical feature set,and a supervised XGBoost classifier is constructed to identify and output the detection results.The results on the IEEE 30-node system show that the proposed method can enhance the stability of the FDIA detection model under scarce labeled samples and imbalanced data,compared with other FDIA detection algorithms.The proposed method can improve recognition accuracy and reduce false alarm rate.
作者 黄冬梅 王一帆 胡安铎 周游 时帅 胡伟 HUANG Dongmei;WANG Yifan;HU Anduo;ZHOU You;SHI Shuai;HU Wei(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 201306,China;College of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China;State Grid Suzhou Power Supply Company of Jiangsu Electric Power Co.,Ltd.,Suzhou 215004,China;College of Economics and Management,Shanghai University of Electric Power,Shanghai 201399,China)
出处 《电力工程技术》 北大核心 2024年第2期134-141,共8页 Electric Power Engineering Technology
基金 国家社科基金资助项目(19BGL003)。
关键词 虚假数据注入攻击(FDIA) 有监督学习 无监督学习 对比学习 数据扩充 特征融合 false data injection attack(FDIA) supervised learning unsupervised learning contrastive learning data expansion feature enhancement
  • 相关文献

参考文献16

二级参考文献175

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部