摘要
针对无人机航拍图像下行人属性识别任务特征提取效率低问题,提出一种联合全局与局部外观特征学习的行人属性识别算法。首先为了提升算法的局部区域定位能力,提出一种新颖的基于注意力的属性定位模块,模块通过矩阵乘法来建模不同通道间的空间依赖关系,并利用全局平均池化产生的特征进一步增强提取到的局部区域信息,实现了更好的局部特征表达能力;其次,为了防止生成的局部区域信息出现冗余,设计一种注意力多样性损失,通过最小化特征通道的相似性来约束各个局部区域互不重叠;最后,在两个公开的行人属性识别数据集上的实验结果表明,上述设计可以有效提高属性识别准确率并且参数量仅轻微增加。
作者
陈楠
杨玻
刘书羽
尉嘉维
CHEN Nan;YANG Bo;LIU Shuyu;YU Jiawei
出处
《信息技术与信息化》
2024年第2期118-121,共4页
Information Technology and Informatization