摘要
为了研究高海拔环境下运动装药的爆炸冲击波传播特性,利用AUTODYN有限元软件,研究了不同海拔高度及其解耦对应的低温条件和低压条件对运动装药爆炸冲击波超压场的影响规律;建立了预测低温环境和低压环境下运动装药爆炸冲击波超压的理论计算模型,并通过试验数据和数值模拟进行了对比验证。结果表明,该计算模型可以有效预测不同低温、低压以及低温和低压耦合的高海拔环境下运动装药的爆炸冲击波超压;海拔高度从0升至10000 m,冲击波超压峰值平均减小35.6%,冲击波作用范围增加62.0%;随着环境温度降低,冲击波超压峰值平均增加0.43%,冲击波作用范围减小11.9%;随着环境压力降低,冲击波超压峰值平均减小36.4%,冲击波作用范围增加83.5%;不同海拔高度下装药运动速度引起的冲击波超压增大系数变化规律与解耦对应的低压条件影响规律基本相似;高海拔环境对运动装药爆炸冲击波的作用范围及超压的影响主要取决于低压条件,低温条件的影响程度较小。
The effects of altitudes and the decoupled conditions of low pressure and temperature on the blast wave parameters of moving charge were investigated by employing the AUTODYN software.Additionally,a theoretical calculation model was developed to predict peak overpressure of the moving charge under low pressure and temperature.The model was validated subsequently through experimental data and numerical simulations.The results indicate that the model can assess the blast wave peak overpressure of moving charge at low temperature,pressure and coupled high-altitude environment effectively.The peak overpressure of the blast wave generated by the moving charge decreased by an average of 35.6%,the action range increased by 62.0%for altitude increased from 0 to 10000 m.With the ambient temperature decreased,the peak overpressure of the blast wave increased by an average of 0.43%,the action range decreases by 11.9%;and with the ambient pressure decreased,the peak overpressure of the blast wave decreased by an average of 36.4%,the action range increased by 83.5%.The increase coefficient of blast wave overpressure resulting from the moving charge at various altitudes closely resembles that of low pressure.In high-altitude settings,the action range and overpressure of the blast wave from the moving charges explosion are predominantly influenced by pressure,whereas the effect of temperature is comparatively marginal.
作者
李瑞
杨耀勇
汪泉
徐小猛
洪晓文
LI Rui;YANG Yao-yong;WANG Quan;XU Xiao-meng;HONG Xiao-wen(Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining,Anhui University of Science and Technology,Huainan Anhui 232001,China;School of Chemical and Blasting Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China;Anhui Engineering Laboratory of Explosive Materials and Technology,Anhui University of Science and Technology,Huainan Anhui 232001,China;Yantai Business Unit of Inner Mongolia Metal Material Research Institute,Yantai Shandong 264003,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2024年第2期159-171,I0003,共14页
Chinese Journal of Explosives & Propellants
基金
煤炭安全精准开采国家地方联合工程研究中心开放基金(No.EC2021015)
安徽省自然科学基金(No.2208085QA26)
安徽理工大学校级重点项目(No.xjzd2020-08)
安徽省爆破器材与技术工程实验室开放基金(No.AHBP2022B-04)
安徽理工大学人才引进基金。