摘要
为了更充分地利用支持特征和查询特征中的关键信息,提出一种基于特征融合和增强注意力的少样本目标检测方法FFA-FSOD(Feature Fusion and enhanced Attention Few-Shot Object Detection)。首先引入迭代注意力特征融合(iAFF)模块,以有效融合支持图像和查询图像的关键特征;其次在iAFF模块后添加特征增强操作,充分利用支持特征信息对查询图像中的目标特征进行增强。为避免上述两次处理可能导致的查询图像特征部分细节信息的丢失,对iAFF模块中的多尺度通道注意力模块(MS-CAM)进行改进,以捕获更多的上下文信息。在MS COCO数据集上的实验结果表明,在2-way 10-shot条件下,与小样本目标检测(FSOD)方法相比,加入iAFF模块、特征增强操作并改进MS-CAM后,FFA-FSOD的平均精度均值(mAP)提升了8.0%。实验结果验证了所提特征融合增强方法充分关注到了特征中的细节信息,从而实现了更好的少样本目标检测效果。
In order to fully utilize the key information in support features and query features,a few-shot object detection method based on feature fusion and enhanced attention was proposed,namely FFA-FSOD(Feature Fusion and enhanced Attention Few-Shot Object Detection).Firstly,the iterative Attention Feature Fusion(iAFF)module was introduced to effectively fuse the key features of the support image and the query image.Secondly,the feature enhancement operation was added after the iAFF module,which made full use of the support feature information to enhance the object features in the query image.To avoid the loss of part of the details of the query image after the above two operations,the Multi-Scale Channel Attention Module(MS-CAM)was improved in the iAFF module to capture more context information.Experimental results on MS COCO dataset under 2-way 10-shot condition show that compared with FSOD(Few-Shot Object Detection)method,after adding the iAFF module,feature enhancement operation and improving MS-CAM,FFA-FSOD has mean Average Precision(mAP)increased by 8.0%.Experimental results show that the proposed feature fusion enhancement method pays full attention to the details of features,thus achieving better detection effect of few-shot objects.
作者
李新叶
侯晔凝
孔英会
燕志旗
LI Xinye;HOU Yening;KONG Yinghui;YAN Zhiqi(Department of Electronic&Communication Engineering,North China Electric Power University,Baoding Hebei 071003,China;Hebei Key Laboratory of Power Internet of Things Technology(North China Electric Power University),Baoding Hebei 071003,China)
出处
《计算机应用》
CSCD
北大核心
2024年第3期745-751,共7页
journal of Computer Applications
基金
河北省科技计划项目(SZX2020034)。