摘要
BACKGROUND Traditional treatments for pancreatic cancer(PC)are inadequate.Photodynamic therapy(PDT)is non-invasive,and proven safe to kill cancer cells,including PC.However,the mitochondrial concentration of the photosensitizer,such as verteporfin,is key.AIM To investigate the distribution of fluorescence of verteporfin in PC cells treated with antitumor drugs,post-PDT.METHODS Workable survival rates of PC cells(AsPC-1,BxPC-3)were determined with chemotherapy[doxorubicin(DOX)and gemcitabine(GEM)]and non-chemotherapy[sirolimus(SRL)and cetuximab(CTX)]drugs in vitro,with or without verteporfin,as measured via MTT,flow cytometry,and laser confocal microscopy.Reduced cell proliferation was associated with GEM that was more enduring compared with DOX.Confocal laser microscopy allowed observation of GEM-and verteporfin-treated PC cells co-stained with 4’,6-diamidino-2-phenylindole and MitoTracker Green to differentiate living and dead cells and subcellular localization of verteporfin,respectively.RESULTS Cell survival significantly dropped upon exposure to either chemotherapy drug,but not to SRL or CTX.Both cell lines responded similarly to GEM.The intensity of fluorescence was associated with the concentration of verteporfin.Additional experiments using GEM showed that survival rates of the PC cells treated with 10μmol/L verteporfin(but not less)were significantly lower relative to nil verte-porfin.Living and dead stained cells treated with GEM were distinguishable.After GEM treatment,verteporfin was observed primarily in the mitochondria.CONCLUSION Verteporfin was observed in living cells.In GEM-treated human PC cells,verteporfin was particularly prevalent in the mitochondria.This study supports further study of PDT for the treatment of PC after neoadjuvant chemotherapy.