摘要
针对雷达电源组件因长期处于振动应力作用下易导致振动疲劳而出现失效,进而影响雷达可靠性的问题,提出了一种基于振动故障物理(physics of failure,PoF)和蒙特卡洛的雷达电源组件故障预计方法。首先根据雷达电源组件的硬件结构、产品材料等参数建立雷达电源组件有限元分析(finite element analysis,FEA)数字样机模型,然后施加雷达电源组件的振动边界载荷,进行振动应力分析,对比模态实验结果,验证了振动应力分析的合理性;最后考虑雷达电源组件元器件参数的不确定性,结合PoF和蒙特卡洛抽样进行故障预计,得到雷达电源各组件潜在故障的寿命分布。结果表明,在振动应力下,16块电源板的预计寿命最短。与实际故障预计结果对比,验证了所提算法的合理性。该方法在对雷达电源组件进行故障预计方面有很好的应用前景,促进了基于PoF模型的故障预计技术发展。
To solve the problem of radar power module failure due to vibration fatigue caused by vibration stress for a long time,a radar power module failure prediction method based on physics of failure(PoF)and Monte Carlo was proposed.Firstly,the finite element analysis(FEA)digital prototype model of the radar power module was established according to the hardware structure and product materials of the radar power module,and then the vibration boundary load of the radar power module was applied to analyze the vibration stress,and the rationality of the vibration stress analysis was verified by comparing the modal experiment results.Finally,considering the uncertainty of radar power module parameters,combined with PoF and Monte Carlo sampling for failure prediction,the life distribution of each potential fault of radar power module was obtained.The results showed that the life expectancy of 16 power supply boards was the shortest under vibration stress.Compared with the actual fault prediction results,the rationality of the proposed algorithm is verified,which has a good application prospect for the fault prediction of radar power module in the future,and promotes the development of fault prediction technology based on PoF model.
作者
赵宁
张宇
黄大荣
唐环
唐敏
李天鸿
ZHAO Ning;ZHANG Yu;HUANG Darong;TANG Huan;TANG Min;LI Tianhong(The Eighth Research Academy of China State Shipbuilding Co.,Ltd.,Nanjing 211163,China;School of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Hangzhou Sanhai Electronics Co.,Ltd.,Hangzhou 311122,China)
出处
《湖北民族大学学报(自然科学版)》
CAS
2024年第1期97-104,共8页
Journal of Hubei Minzu University:Natural Science Edition
基金
“十三五”国防技术基础科研项目(JSZL2019207B008)。
关键词
电源组件
振动分析
故障预计
故障物理
振动应力
power module
analysis of vibration
failure prediction
physics of failure
vibration stress