期刊文献+

基于F-score和二进制灰狼优化的肿瘤基因选择方法

Tumor Gene Selection Based on F-score and Binary Grey Wolf Optimization
下载PDF
导出
摘要 针对肿瘤基因数据维度高、噪声多、冗余性高的现状,结合Spearman相关系数改进F-score算法,在此基础上优化二进制灰狼算法,提出了一种基于改进F-score和二进制灰狼算法的肿瘤基因选择算法.首先,考虑特征之间的相关性,计算每个特征的F-score值和特征之间的Spearman相关系数的绝对值;然后,计算权重系数得出各个特征的权重值,依据重要性进行排序,选出初选特征子集;最后,通过收敛因子的衰减曲线和初始化方法优化二进制灰狼算法,调整全局搜索和局部搜索所占比例,增强全局搜索能力并提高局部搜索速度,有效节省时间开销,提升特征选择的分类性能和效率,得到最优特征子集.在9个肿瘤基因数据集上测试所提算法,在分类准确率和筛选特征数目两个指标上进行仿真实验,并与4种其他算法进行对比,实验结果证明所提算法表现良好,可有效降低基因数据维度,并具有较好的分类精度. According to the tumor gene situation of high dimensionality,noise and redundancy,this paper improved the F-score algorithm by the Spearman correlation coefficient,optimized the binary gray wolf algorithm,and proposed a gene feature selection algorithm with the improved F-score and the binary gray wolf algorithm.Firstly,by considering the correlation between features,the F-score value of each feature and the absolute value of Spearman correlation coefficient between features were calculated.Secondly,by calculating the weight coefficient,the weight value of each feature was derived to be ranked according to their importance and select a primary feature subset.Finally,the binary gray wolf algorithm was optimized through adjusting the proportion of global search and local search to enhance the global search capability and improve the speed of local search,so that the time overhead could be saved and the optimal feature subset was selected,which can improve the classification performance and efficiency of feature selection.The designed algorithm is tested on nine tumor gene datasets and simulated on two indexes of correct accuracy and number of filtered features.When compared with four other algorithms,the experimental results prove that the algorithm performed well,reduced the dimensionality of gene data,and had better classification accuracy.
作者 穆晓霞 郑李婧 Mu Xiaoxia;Zheng Lijing(College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China)
出处 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第1期111-120,共10页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61772176).
关键词 肿瘤基因 Fisher-score Spearman 相关系数 二进制灰狼优化算法 特征选择 tumor gene Fisher-score Spearman correlation coefficient binary grey wolf optimization algorithm feature selection
  • 相关文献

参考文献15

二级参考文献86

  • 1金慧敏,马良.遗传退火进化算法在背包问题中的应用[J].上海理工大学学报,2004,26(6):561-564. 被引量:37
  • 2应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4LEE M C.Using support vector machine with a hybrid feature selection method to the stock trend prediction[J].Expert Systems with Applications,2009,36(8):10896-10904. 被引量:1
  • 5MALDONADO S,WEBER R.A wrapper method for feature selection using support machines[J].Information Sciences,2009,179(13):2208-2217. 被引量:1
  • 6LIU Y,ZHENG Y F.FS_SFS:A novel feature selection method for support vector machines[J].Pattern Recognition,2006,39 (7):1333-1345. 被引量:1
  • 7HUA J P,TEMBE W D,DOUGHERTY E R.Performance of feature-selection methods in the classification of high-dimensian data[J].Pattern Recognition,2009,42(3):409-424. 被引量:1
  • 8GUNAL S,GEREK O N,ECE D G,et al.The search for optimal feature set in power quality event classification[J].Expert Systems with Applications,2009,36(7):10266-10273. 被引量:1
  • 9WIDODO A,YANG B S.Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Expert Systems with Applications,2007,33(1):241-250. 被引量:1
  • 10GUYON I,ELISSEEFF A.An introduction to variable and feature selection[J].Machine Learning Research,2003,3:1157-1182. 被引量:1

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部