摘要
针对船用LNG双燃料发动机设备复杂,故障预测效率低、准确度差的问题,提出一种长短期记忆网络与改进粒子群优化算法优化支持向量机融合的预测模型。利用LSTM模型时间序列变化的能力对设备未来的运行状态进行预测,然后采用非线性自适应惯性权重改进PSO算法对SVM参数进行寻优,以提高其寻优能力和收敛速度;改进的LSTM-PSO-SVM融合模型可实现对设备故障状态的快速、准确预测。通过对某船用LNG双燃料发动机的故障预测仿真,结果表明上述模型具有更高的故障识别准确率和更快的识别速度,能够准确预测船用LNG双燃料发动机潜在故障。
In order to solve the problems of complex equipment,low efficiency and poor accuracy of fault prediction for marine LNG dual-fuel engine,a prediction model combining long-short term memory network(LSTM)and improved particle swarm optimization algorithm(PSO)to optimize the model of support vector machine(SVM)was proposed.The time series capability of the LSTM model is used to predict the future operating state of the device,and then the SVM parameters are optimized using a non-linear adaptive inertia weight improvement PSO algorithm to improve the optimization power and convergence rate.The improved LSTM-PSO-SVM fusion model can predict the equipment fault state quickly and accurately.Through the fault prediction simulation of a low-speed Marine LNG dual-fuel engine,the results show that the above model has accurate and efficient prediction ability,and can accurately identify potential faults of Marine LNG dualfuel engine.
作者
姜峰
杨奕飞
JIANG Feng;YANGYi-fei(College of Automation,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Ocean College,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处
《舰船科学技术》
北大核心
2024年第4期120-126,共7页
Ship Science and Technology
基金
江苏省重点研发计划资助项目(BE2021075)
江苏省科技成果转化专项资金项目(BA2022066)。
关键词
长短期记忆网络
改进粒子群优化
支持向量机
故障预测
LNG双燃料发动机
long short-term memory network
improved particle swarm optimization algorithm
support vector machine
fault prediction
LNG dual fuel engine