摘要
通过原位共沉淀法可控制备了系列直接Z型MIL-100(Fe)/Bi OBr异质结。使用粉末X射线衍射(PXRD)、傅里叶红外变换(FTIR)光谱、紫外可见漫反射光谱(UV-Vis DRS)、扫描电镜(SEM)、高倍透射电镜(HRTEM)以及X射线光电子能谱(XPS)对MIL-100(Fe)/Bi OBr异质结晶体结构、微观形貌、光学性能、化学组成进行表征。以低功率发光二级管可见光为光源,探究了MIL-100(Fe)/Bi OBr异质结光芬顿降解磺胺甲恶唑(SMX)性能。最佳反应体系MB-7/Vis/H_(2)O_(2)(MB-7是MIL-100(Fe)质量为Bi OBr质量的70%时制备的样品)在光源照射70 min后可降解99.8%SMX(5 mg·L^(-1))。同时,还考察了H_(2)O_(2)浓度、催化剂投加量、p H值以及无机阴离子对MB-7/Vis/H_(2)O_(2)降解SMX影响。MB-7/Vis/H_(2)O_(2)能够在经过5轮循环降解实验后保持95%以上的SMX降解效率,表明其具有较好的循环稳定性。通过光致发光(PL)光谱、光电化学测试、活性物质捕获实验以及电子自旋共振(ESR)技术对光芬顿降解SMX机理进行了揭示。增强的光芬顿活性的机制主要来自于异质结的构建加速了光生载流子的分离,进而促进了活性物质产生以及Fe^(3+)/Fe^(2+)的循环。
A series of MIL-100(Fe)/BiOBr direct Z-scheme heterojunctions was fabricated by the in-situ precipita-tion method.The crystal structures,micromorphology,optical adsorption property,and chemical states were estimat-ed by powder X-ray diffraction(PXRD),Fourier transforms infrared(FTIR)spectra,UV-Vis diffuse reflectance spec-tra(UV-Vis DRS),scanning electron microscopy(SEM),high-resolution transmission electron microscope(HRTEM)and X-ray photoelectron spectra(XPS).The performance of photo-Fenton degradation for sulfamethoxazole(SMX)under low-powered light emitting diode lamp irradiation was explored.The catalytic degradation efficiency of SMX(5 mg·L^(-1))in the optimal reaction system(MB-7/Vis/H_(2)O_(2),MB-7 was prepared when the mass of MIL-100(Fe)was 70%of the mass of BiOBr)could reach 99.8%upon 70 min illumination.Meanwhile,the effects of H_(2)O_(2) concentra-tion,catalyst dosage,pH,and co-existing inorganic anions on SMX removal over MB-7/Vis/H_(2)O_(2) were studied.The removal efficiency of SMX could reach above 95%after five consecutive operations,suggesting that MB-7 had good stability and reusability.The possible catalytic mechanism was unraveled by photoluminescence(PL)spectra,elec-trochemical measurements,radical trapping experiments,and electronic spin resonance(ESR)technique.The enhanced photo-Fenton reactivity could be attributed to the fabrication of heterostructures accelerated separation photocarriers and then induced the generation of reactive species and Fe^(3+)/Fe^(2+)redox cycle.
作者
李雨佳
王天予
王茀学
王崇臣
LI Yujia;WANG Tianyu;WANG Fuxue;WANG Chongchen(Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;School of Environment and Energy Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2024年第3期481-495,共15页
Chinese Journal of Inorganic Chemistry
基金
国家自然科学基金(No.22176012)
北京市自然科学基金(No.52370025)资助。