期刊文献+

Recent progress of self-supported air electrodes for flexible Zn-air batteries 被引量:1

下载PDF
导出
摘要 Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(22072107,21872105) the Natural Science Foundation of Shanghai(23ZR1464800) the Fundamental Research Funds for the Central Universities the Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
  • 相关文献

参考文献2

二级参考文献100

  • 1Sharma, S.; Pollet, B. G. Support materials for PEMFC and DMFC electrocatalystsA review. J. Power Sources 2012, 208, 96-119. 被引量:1
  • 2Zhao, Y.; Wang, Y.; Cheng, X.; Dong, L.; Zhang, Y.; Zang, J. Platinum nanoparticles supported on epitaxial TiC/ nanodiamond as an electrocatalyst with enhanced durability for fuel cells. Carbon 2014, 67, 409-416. 被引量:1
  • 3U.S. Departement of Energy. Fuel cell technical team roadmap. 2013. http://energy.gov/sites/prod/files/2014/02/ fS/fctt_roadmap_iune2013.pdf. 被引量:1
  • 4Sun, X.; Li, D.; Ding, Y.; Zhu, W.; Guo, S.; Wang, Z. L.; Sun, S. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 2014, 136, 5745-5749. 被引量:1
  • 5Su, L.; Jia, W. Z.; Li, C. M.; Lei, Y. Mechanisms for enhanced performance of platinum-based electrocatalysts inproton exchange membrane fuel cells. ChemSusChem 2014, 7, 361-378. 被引量:1
  • 6Marcu, A.; Toth, G.; Pietrasz, P.; Waldecker, J. Cathode catalysts degradation mechanism from liquid electrolyte to membrane electrode assembly. C. R. Chimie. 2014, 17, 752 759. 被引量:1
  • 7Takenaka, S.; Miyamoto, H.; Utsunomiya, Y.; Matsune, H.; Kishida, M. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C 2014, 118, 774-783. 被引量:1
  • 8Kuo, P. L.; Hsu, C. H.; Wu, H. M.; Hsu, W. S.; Kuo, D. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells 2012, 12, 649 655. 被引量:1
  • 9Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523. 被引量:1
  • 10Park, J. E.; Jang, Y. J.; Kim, Y. J.; Song, M. S.; Yoon, S.; Kim, D. H.; Kim, S. J. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst suppor- ting material for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 103-109. 被引量:1

共引文献24

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部