摘要
超导量子干涉器件(SQUID)是利用磁通量子化与约瑟夫森效应这两种特性而形成的超导器件,可以分辨极微弱磁场变化,在磁信号灵敏探测方面应用广泛。因此,为确保其输出映射的准确性与使用质量,对使用过程中其进行定期校准至关重要。本文针对SQUID二阶磁梯度计在使用过程中的标定系统优化问题展开讨论,以标定线圈圆心为中心点建立笛卡尔坐标系,固定Y轴方向的相对位置,首先从Z轴方向移动标定线圈找到电流灵敏度最大位置范围,之后进一步精确标定位置,在X轴方向找到对Z轴方向移动最不敏感的相对位置,为标定中可能出现的人为误差提供更大的容错范围。并通过解析模型与有限元仿真模型相互验证,为后续实验提供了理论依据与先行性。利用解析模型与有限元模型及实测数据确定SQUID二阶磁梯度计在使用中的校准系数均为1.107,并对所提出的标定方法所产生的不确定度进行分析,为梯度计在低噪声环境条件下进行标定提供了更大的鲁棒性。
Superconducting quantum interference devices(SQUID)are superconducting devices that use two properties to resolve very weak magnetic field variations,including flux quantization and Josephson effect.They are used in a wide range of applications for sensitive detection of magnetic signals.Therefore,to ensure the accuracy and quality of its output mapping,it is essential to calibrate it periodically during use.In this article,the calibration system optimization of SQUID second-order magnetic gradiometer in use is discussed.A Cartesian coordinate system is established with the center of the calibration coil as the center point,and the relative position in the Y-axis direction is fixed.The calibration coil is moved from the Z-axis direction to find the maximum position range of current sensitivity.Then,the position is further calibrated precisely to find the relative position in the X-axis direction that is least sensitive to the movement in the Z-axis direction.,which provides a larger tolerance range for possible human errors in calibration.The analytical model and the finite element simulation model are validated against each other to provide a theoretical basis and precedence for subsequent experiments.The calibration coefficient of SQUID second-order magnetic gradiometer in use is determined to be 1.107 through the analytical model,the finite element model and the measured data.The uncertainty generated by the proposed calibration method is analyzed to provide greater robustness for the calibration of the gradiometer under low-noise environment conditions.
作者
尹渌
张朝晖
张天尧
米旺
帕夫洛·萨特科夫斯基
Yin Lu;Zhang Zhaohui;Zhang Tianyao;Mi Wang;Pavlo Sutkovyi(College of Automation,University of Science and Technology Beijing,Beijing 100083,China;Beijing SQUID Quantum Technology Co.,Ltd.,Beijing 100083,China;NAS Ukraine,V.M.Glushkov Institute of Cybernetics,Kiev 03115,Ukraine)
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023年第9期153-162,共10页
Chinese Journal of Scientific Instrument
基金
国家重点研发计划(2021YFA0718901)
国家自然科学基金(62005014)
国家高端外国专家引进计划(G2022105034L)
高校基本科研业务费(FRF-IDRY-21-014)项目资助。
关键词
SQUID二阶磁梯度计
有限元仿真
校准系数标定
SQUID second-order magnetic gradiometer
finite element simulation
calibration coefficient calibration