摘要
在自然边界归化原理的基础上,构造了一种无界凹角区域上各向异性问题的多子域非重叠区域分解算法,这是两子域的非重叠区域分解法的推广.本文给出了多子域区域分解算法的离散和变分形式,利用等价性理论,通过详细的理论证明说明此算法是收敛的,且与网格参数h无关.
Based on the principle of natural boundary naturalization,a multi-subdomain non-overlapping region decomposition algorithm for anisotropy problems on unbounded concave angle regions is constructed,which is a generalization of the non-overlapping region decomposition method of two subdomains.In this paper,the discrete and variational forms of the multi-subdomain region decomposition algorithm are given,and the equivalence theory is used to show that the algorithm is convergent and has nothing to do with the grid parameter h.
作者
刘何熠
刘保庆
LIU Heyi;LIU Baoqing(School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210023,China)
出处
《长春师范大学学报》
2024年第2期23-27,共5页
Journal of Changchun Normal University
基金
江苏省高校自然科学研究面上项目“若干非线性外问题的数值算法研究”(14KJB110007)
江苏省高校“青蓝工程”项目。
关键词
多子域
非重叠区域分解算法
无界凹角区域
各向异性问题
人工边界
multi-subdomain
non-overlapping domain decomposition algorithm
unbounded concave angle domain
anisotropic problem
artificial boundary