期刊文献+

一种修正评分偏差并精细聚类中心的协同过滤推荐算法 被引量:1

A Collaborative Filtering Recommender Algorithm for Correcting Rating Biases andRefining Cluster Centers
下载PDF
导出
摘要 协同过滤作为国内外学者普遍关注的推荐算法之一,受评分失真、数据稀疏等问题影响,算法推荐效果不尽如人意。为解决上述问题,文章提出了一种改进的聚类协同过滤推荐算法。首先,该算法利用无监督情感挖掘技术将评论情感映射为一个固定区间中的值,通过加权修正用户评分偏差;然后,构建修正后用户-产品评分矩阵的数据场,利用启发式寻优算法计算最佳聚类数和最优初始聚类中心,进而对用户进行划分聚类,结合最近邻用户相似性与评分产生推荐结果;最后,基于三个自建真实数据集对所提算法性能和有效性进行全面评估。实验结果表明,改进算法在精度Precision、召回率Recall和F1-Score评价指标上的表现均优于其他算法,能够有效应对数据稀疏的问题,提升推荐系统的推荐效果。 As one of the widely studied recommender algorithms by scholars globally,collaborative filtering is adversely affected by issues such as rating biases and data sparseness,leading to suboptimal recommendation performance.In order to address the aforementioned issues,this paper proposes an improved clustering-based collaborative filtering recommender algorithm.Firstly,the algorithm utilizes unsupervised sentiment mining techniques to map the sentiment of comments into a value within a fixed range,correcting user rating biases through weighted adjustments.Then,the algorithm constructs a data field for the modified user-item rating matrix,employes a heuristic optimization algorithm to calculate the optimal number of clusters and the best initial clustering centers.This facilitates the clustering segmentation of users,integrating proximity-based user similarity and ratings to generate recommendations.Finally,the performance and effectiveness of the proposed algorithm are comprehensively evaluated based on three self-constructed real-world datasets.The experimental results show that the improved algorithm outperforms other algorithms in terms of Precision,Recall and F1-Score evaluation indexes,and proves effective in addressing data sparsity and improving the recommendation performance of the recommender system.
作者 马鑫 段刚龙 Ma Xin;Duan Ganglong(Business School,Nankai University,Tianjin 300110,China;School of Economics and Management,Xi’an University of Technology,Xi’an 710054,China;Big Data Analysis and Business Intelligence Laboratory,Xi’an University of Technology,Xi’an 710054,China)
出处 《统计与决策》 北大核心 2024年第4期23-27,共5页 Statistics & Decision
基金 陕西省软科学项目(2022KRM188)。
关键词 评分偏差 随机初始聚类中心 协同过滤 评论情感挖掘 数据场聚类 rating biases random initial clustering centers collaborative filtering comment sentiment mining data field clustering
  • 相关文献

参考文献14

二级参考文献126

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:82
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323. 被引量:1
  • 4Za(i)ane O R,Foss A,Lee C H,Wang W.On data clustering analysis:scalability,constraints and validation[A].Proceedings of the Sixth Pacific Asia Conference on Knowledge Discovery and Data Mining[C].Taiwan:Springer-Verlag,2002.28-39. 被引量:1
  • 5Zhang T,Ramakrishnman R,Linvy M.BIRCH:an efficient method for very large databases[A].Proceedings of ACM SIGMOD International Conference on Manangement of Data[C].Canada:ACM Press,1996.103-114. 被引量:1
  • 6Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[A].Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data[C].Seattle:ACM Press,1998.73-84. 被引量:1
  • 7George K,Han E H,Kumar V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE computer,1999,27(3):329-341. 被引量:1
  • 8Wright W E.Gravitational clustering[J].Pattern Recognition,1977,9(3):151-166. 被引量:1
  • 9Oyang Y J,Chen C Y,Yang T W.A study on the hierarchical data clustering algorithm based on gravity theory[A].The 5th European Conference on Principles and Practive of Knowledge Discovery in Databases(PKDD2001)[C].Freiburg:Springer-Verlag,2001.350-361. 被引量:1
  • 10Landau L D,Lifshitz E M.The classical theory of fields[M].Beijing:Beijing World Publishing Ltd,1999. 被引量:1

共引文献294

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部