摘要
借鉴戈斯(Goos)和卡娅(Kaya)的分析框架,从与数学思维最为相关的问题解决和推理两个方面,以2010年为节点,将CNKI数据库1998—2021年收录的CSSCI期刊相关论文分为两个阶段,进行分析与比较。研究发现,数学思维的研究人员集中于师范类高校或教育研究机构的在研人员;研究目的以理解数学思维为主,正逐步关注促进数学思维发展的干预方法;研究重点放在问题解决或问题提出上,对推理或证明的关注度不高;实证研究以小学生为主要对象,缺乏后续的效果跟踪;理论基础的定位具有模糊性,研究方法多调查少实验。尽管两个阶段的研究特点有一定相似性,但是也呈现出逐步深化的趋势。未来研究应兼顾对数学思维的具体实证研究与宏观理论观照,寻求建立数学思维的一般理论;鼓励国内外多民族、跨文化的合作,在比较与借鉴中加深对数学思维的认识并完善教学方法;加强教学研究对数学思维培养的贡献,并关注教师专业发展。
Learning from the analysis framework of Goos and Kaya and considering the two most relevant aspects of mathematical thinking which are problem solving and reasoning,this article divides CSSCI papers in CNKI database from 1998 to 2021 into two time periods for analysis and comparison with2010 as the turning point.Research finds that people engaged in mathematical thinking are mostly researchers in normal universities or educational research institutions,their main purpose is to understand mathematical thinking,they are gradually paying attention to interventions to promote mathematical thinking,they mainly focus on problem solving or posing,rather than reasoning or proving,empirical researches focus on primary school students but lack follow-up,and the orientation of theoretical basis is ambiguous and researches are more carried as investigation than experiment.Although the two periods share certain similarities,they also show a trend of gradual deepening.Future research should focus on both empirical research and macro theory of mathematical thinking in order to establish general theory of it,encourage multi-ethnic and cross-cultural cooperation at home and abroad and deepen the understanding of it and improve teaching methods through comparison and reference,and strengthen the guidance of teaching research on its cultivation and care more about teachers'professional development.
作者
刘豹
潘禹辰
徐文彬
Liu Bao;Pan Yuchen;Xu Wenbin
出处
《课程.教材.教法》
北大核心
2023年第11期116-123,共8页
Curriculum,Teaching Material and Method
基金
全国教育科学规划“十三五”课题“中小学STEM教育基本理论与本土实践问题研究”(BHA180126)。
关键词
数学思维
问题解决
推理
问题提出
证明
mathema tical thinking
problem solving
reasoning
problem posing
proving