期刊文献+

基于小样本下改进ChaosNet的轴承故障诊断 被引量:1

Research on Intelligent Diagnosis of Bearing Faults Based on Improved ChaosNet with Small Samples
下载PDF
导出
摘要 为解决在训练样本不足条件下,轴承故障特征提取困难的问题,提出一种基于改进神经混沌学习(neurochaos learning+AdaBoost,NL-AdaBoost)的轴承故障诊断新方法。首先,对时域振动信号进行快速傅里叶变换(fast fourier transform,FFT)提取频域特征,拼接时频域信号获得一维特征样本;其次,输入信号产生对混沌GLS神经元的激励,形成ChaoFEX特征,馈送至集成学习分类器(AdaBoost);随后,选取轴承故障特征样本,对样本集做k折交叉验证,获得模型最优超参数值,将其应用于测试集进行模型分类能力验证;最后,在小样本对比实验中,与4种常见深度学习算法比较模型的macro F1-score。实验结果证明,在低训练样本条件下,NL-AdaBoost模型具有良好的准确性和泛化能力。 A new method of bearing fault diagnosis based on improved neurochaos learning(neurochaos learning+AdaBoost,NL-AdaBoost) is proposed.First,the fast fourier transform(FFT) of the time-domain vibration signal is performed to extract the frequency-domain features,and the one-dimensional feature samples are obtained by splicing the time-frequency-domain signals;then,the input signal generates excitation to the chaotic GLS neurons to form ChaoFEX features,which are fed to the integrated learning classifier(AdaBoost);subsequently,the bearing fault feature samples,and do k-fold cross-validation on the sample set to obtain the optimal hyperparameter values of the model,which are applied to the test set for model classification capability validation;finally,in a small-sample comparison experiment,the macro F1-score of the model is compared with four common deep learning algorithms.The experimental results demonstrate that under the low training sample condition,NL-AdaBoost,the model has good accuracy and generalization ability.
作者 李天昊 李志星 王衍学 LI Tianhao;LI Zhixing;WANG Yanxue(School of Mechanical-Electrical and Vehicle Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Key Laboratory of Service Performance Assurance of Urban Rail Vehicles,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处 《组合机床与自动化加工技术》 北大核心 2024年第2期182-185,192,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(51875032) 国家自然科学基金青年基金项目(51805275) 北京建筑大学青年教师科研能力提升计划课题项目(X21053)。
关键词 小样本训练 神经混沌学习 滚动轴承 故障诊断 small sample training neural chaos learning rolling bearing fault diagnosis
  • 相关文献

参考文献3

二级参考文献24

共引文献49

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部