期刊文献+

Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One-and Two-Dimensions

下载PDF
导出
摘要 In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.
作者 Yu Wang Min Cai
出处 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1674-1696,共23页 应用数学与计算数学学报(英文)
基金 the National Natural Science Foundation of China under Grant Nos.12271339 and 12201391.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部