期刊文献+

电力数据信息网络阻塞故障节点快速辨识研究

Research on fast identification of blocking fault nodes in power data information network
下载PDF
导出
摘要 由于电力数据信息网络阻塞,导致脆弱性故障节点快速扩散,造成故障节点辨识效果差且耗时较长。为此,提出了电力数据信息网络阻塞故障节点快速辨识研究。构建网络阻塞故障节点跟踪模型,获取故障节点跟踪集合。使用层次分析法构造比较矩阵,计算辨识指标权重向量。定量分析故障数据特征,获取故障节点信息特征矢量。结合神经网络模型构建分析矩阵,在短时间内得到最终故障节点分布结果。通过量化指标,获取故障节点辨识结果。计算节点继电保护脆弱贡献度,辨识脆弱故障节点。由实验结果可知,该方法统计的故障节点信息特征与理想特征一致,具有较好的辨识效果,辨识时间仅为10 s,加快了故障节点的辨识速率。 Due to the blocking of power data information network,the fragile fault nodes spread rapidly,resulting in poor identification effect and long time-consuming.Therefore,a study on fast identification of blocking fault nodes in power data information network is proposed.Build the network blocking fault node tracking model,and obtain the fault node tracking set.The analytic hierarchy process is used to construct the comparison matrix and calculate the weight vector of the identification index.The fault data characteristics are analyzed quantitatively,and the fault node information feature vector is obtained.Combined with the neural network model,the analysis matrix is constructed,and the final distribution results of fault nodes are obtained in a short time.Through quantitative indicators,the identification results of fault nodes are obtained.Calculate the fragile contribution degree of node relay protection and identify the fragile fault node.The experimental results show that the information characteristics of the fault nodes counted by this method are consistent with the ideal characteristics,and have a good identification effect.The identification time is only 10 s,and the identification speed of the fault nodes is accelerated.
作者 方圆 沈越欣 许静萱 丁鑫 唐志斌 FANG Yuan;SHEN Yuexin;XU Jingxuan;DING Xin;TANG Zhibin(Information and Communication Branch,State Grid Anhui Electric Power Co.,Ltd.,Hefei 230022,China;Beijing JENSEC Technology Limited Company,Beijing 100000,China)
出处 《电子设计工程》 2024年第5期141-145,共5页 Electronic Design Engineering
关键词 电力数据信息 网络阻塞 故障节点 快速辨识 power data information network blocking failure node fast identification
  • 相关文献

参考文献16

二级参考文献222

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部