期刊文献+

基于机器学习的通信电缆故障检测与定位方法

Fault Detection and Localization Method of Communication Cables Based on Machine Learning
下载PDF
导出
摘要 为解决传统的通信电缆故障检测与定位方法存在的灵敏性不足和智能化程度低等问题,提出基于机器学习的通信电缆故障检测与定位方法。首先,基于行波法检测原理搭建通信电缆故障仿真模型来采集实验数据样本;然后,提出基于粒子群优化-支持向量机(PSO-SVM)的通信电缆故障检测模型,其故障识别准确率达99.4%;接着,提出基于卷积神经网络-长短时记忆(CNN-LSTM)的通信电缆故障定位模型,该模型对故障点定位的平均绝对误差为0.334 9,均方根误差为0.320 8;最后,通过对比实验验证CNN-LSTM的网络准确率较单独使用CNN和LSTM模型分别提高了9.47%和6.2%。 To address the issues of insufficient sensitivity and low intelligence in traditional communication cable fault detection and localization methods,a fault detection and localization method of communication cables based on machine learning is proposed.Firstly,based on the principle of traveling wave detection,a communication cable fault simulation model is constructed to collect experimental data samples;Then,a communication cable fault detection model based on Particle Swarm Optimization Support Vector Machine(PSO-SVM)is proposed,with a fault recognition accuracy of 99.4%;Next,a communication cable fault location model based on Convolutional Neural Network Long Short Term Memory(CNN-LSTM)is proposed.The average absolute error of the model for fault location is 0.3349,and the root mean square error is 0.3208;Finally,through comparative experiments,it was verified that the network accuracy of CNN-LSTM was 9.47%and 6.2%higher than that of using CNN and LSTM models alone,respectively.
作者 黄艺航 蔡凯武 黄晓智 袁澄 梁恩源 林智海 HUANG Yihang;CAI Kaiwu;HUANG Xiaozhi;YUAN Cheng;LIANG Enyuan;LIN Zhihai(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China;School of Advanced Manufacturing,Guangdong University of Technology,Jieyang,522000,China)
出处 《自动化与信息工程》 2024年第1期35-41,60,共8页 Automation & Information Engineering
关键词 PSO-SVM模型 CNN-LSTM模型 行波法 通信电缆 故障检测 故障定位 PSO-SVM model CNN-LSTM model traveling wave method communication cable fault detection fault localization
  • 相关文献

参考文献8

二级参考文献66

  • 1梁睿,赵国栋,王崇林,张栋梁.配电网线路绝缘状态在线监测研究[J].电工技术学报,2013,28(S2):331-336. 被引量:4
  • 2汤蕴璎.电机学[M].2版.北京:机械工业出版社,2005. 被引量:5
  • 3Inoue N, Tsunekage T, Sakai S. On-line fault location system for 66kV underground cables with fast O/E and fast A/D technique[J]. IEEE Transactions on Power Delivery, 1994, 9(1): 579-584. 被引量:2
  • 4KawaiT, TakinamiN, ChinoT, etal. A new approach to cable fault location using fiber optic technology[J]. IEEE Transactions on Power Delivery, 1995, 10(1): 85-91. 被引量:2
  • 5Zhang X H, Jiang X W, Xie H K. The application of fiber optic distributed temperature sensor to fault detection of XLPE insulated underground cable[A]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials[ 被引量:2
  • 6Inoue N, Tsunekage T, Sakai S. Fault section detection system for 275kV XLPE insulated cable with optical sensing technology[J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1148-1155. 被引量:2
  • 7Boiarski A A, Pilate O, Fink T, et al. Temperature measurement in power plant equipment using distributed fiber optic sensing[J]. IEEE Transactions onPowerDelivery, 1995, 10(4): 1771-1777. 被引量:3
  • 8Tayama H, Fukuda O, Inoue Y, et al. 6.6kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor[J]. IEEE Transactions on Power Delivery, 1995, 10(4):1718-1723. 被引量:2
  • 9Nishimoto T, Miyahara T, Takehana H, et al. Development of 66kV XLPE submarine cable using optical fiber as a mechanical-damagedetection sensor[J]. IEEE Transactions on Power Delivery, 1995,10(4): 1711-1737. 被引量:1
  • 10KazuoA, Hiroyuki K, Yoshinori K. Fault location system for power cable using global positioning system -flag[DB/OL]. Fujikura Technical Review, 2000, http://www. fujikura.co.jp/gihou/gihou31e/pdf31e/31e_15.pdf. 被引量:1

共引文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部