摘要
知识图谱问答(KGQA)是给定自然语言问题,对问题进行语义理解和解析,进而利用知识图谱进行查询、推理得出答案的过程。但知识图谱通常是不完整的,链接缺失给多跳问答带来许多挑战。许多方法在利用知识图谱嵌入时忽略了重要的路径信息来评估路径和多关系问题之间的相关性;且使用文本语料库也会限制文本增强模型的可扩展性。针对这些现有方法的缺陷,提出了基于变形图匹配的知识图谱问答(DGM-KGQA)模型,该模型同时利用问题和主题实体构建语义子图,与知识图谱的局部结构匹配并找到正确答案。在基准数据集MetaQA上的实验结果验证了DGM-KGQA的有效性,该模型在完整知识图谱上检索到的答案准确率分别比PullNet、EmbedKGQA增加了4.2%、0.8%;在完整度仅有一半的知识图谱上检索到的答案准确率分别比PullNet、EmbedKGQA增加了11.1%、0.5%。实验证明提出的变形图匹配模型能够有效地增强知识图谱的关联性及多跳问答的答案准确率。
Knowledge Graph Question Answering(KGQA)is a process in which a given natural language question is semantically understood and parsed,and then the knowledge graph is used to query and reason to get the answer.But knowledge graphs which lack links,bring many challenges to multi-hop question answering.Many methods ignore important path information to evaluate the correlation between paths and multi-relationship problems when using knowledge graph embeddings,and text corpora also limit the scalability of text-enhanced models.Due to the drawbacks of these existing approaches,the Multi-hop Knowledge Graph Question Answering Based on Deformed Graph Matching(DGM-KGQA)method is proposed.This method builds semantic subgraphs using both question and topic entities,which then match the local structure of the knowledge graph to determine the correct solution.The experimental results on the benchmark dataset MetaQA verify the effectiveness of DGM-KGQA.In comparison to PullNet and EmbedKGQA,the accuracy of the answers retrieved on the completed knowledge graph is 4.2%higher than that of PullNet and 0.8%higher than that of EmbedKGQA.The accuracy of the answers retrieved on half of the knowledge graphs is 11.1%higher than that of PullNet and 0.5%higher than that of EmbedKGQA.Experiments show that the proposed deformed graph matching model can effectively enhance the relevance of knowledge graphs and the answer accuracy of multi-hop question answering.
作者
李香粤
方全
胡骏
钱胜胜
徐常胜
LI Xiangyue;FANG Quan;HU Jun;QIAN Shengsheng;XU Changsheng(Zhengzhou University,Zhengzhou 450000,China;National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2024年第2期529-534,共6页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金(62072456,62036012,62106262)
之江实验室开放课题(2021KE0AB05)。
关键词
自然语言问题
链接缺失
文本语料库
多跳问答
变形图匹配
natural language problems
lack of links
text corpora
multi-hop question answering
deformed graph matching