摘要
以酵母模板法制备的中空羟基磷灰石(HAP)微球为基底,通过连续离子层吸附反应法(SILAR)制备ZnS@CdS/HAP复合微球,利用XRD、SEM、UV-vis等表征手段分析材料的晶体结构、微观形貌和光吸收能力等,同时结合亚甲基蓝的光催化降解实验探讨复合微球的光催化机理.结果表明:利用SILAR法成功实现了ZnS@CdS/HAP复合微球的制备,ZnS@CdS/HAP复合微球的直径约为3~5μm且分散性良好,在可见光区有良好的吸收性能,具有优异的光催化活性,在催化剂添加量1g/L、pH=7、温度为25℃的条件下,对50mL浓度为10mg/L的亚甲基蓝溶液可见光催化100min时去除率高达93%.机理分析证实,ZnS@CdS/HAP光催化可能存在的Z型电荷迁移机制在有效抑制光生载流子复合的同时有效抑制光生腐蚀的发生,提升了ZnS@CdS/HAP复合微球的光催化活性和稳定性.
Hollow hydroxyapatite(HAP)microspheres prepared using yeast template method were used as substrates for the preparation of ZnS@CdS/HAP composite microspheres through the successive ionic layer adsorption reaction(SILAR)method.The crystal structure,micro morphology,and light absorption capabilities of the materials were analyzed using XRD,SEM,UV-vis characterization techniques.Additionally,the photocatalytic mechanism of the composite microspheres was investigated through methylene blue photocatalytic degradation experiments.ZnS@CdS/HAP composite microspheres were successfully prepared using the SILAR method.The ZnS@CdS/HAP composite microspheres had a diameter of about 3~5μm and showed good dispersibility.They exhibited excellent absorption performance in the visible light region and high photocatalytic activity.Under the conditions of 1g/L catalyst addition,pH=7,and 25℃,the removal rate of the 50mL methylene blue solution with a concentration of 10mg/L reached up to 93%after 100min of visible light photocatalysis.The mechanism analysis confirmed that the Z-scheme charge transfer mechanism possibly existing in ZnS@CdS/HAP effectively inhibited the recombination of photogenerated carriers and the occurrence of photocorrosion,thereby enhancing the photocatalytic activity and stability of the ZnS@CdS/HAP composite microspheres.
作者
杨莉
靳晓曼
姜晓雪
王柯
罗玥
YANG Li;JING Xiao-man;JIANG Xiao-xue;WANG Ke;LUO Yue(School of Water and Environment,Chang'an University,Xi’an 710064,China;Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education,Chang'an University,Xi’an 710064,China;Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources,Chang’an University,Xi’an 710064,China;Design and Research Institute of China Power Construction Group Northwest Survey,Xi’an 710065,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2024年第2期851-858,共8页
China Environmental Science
基金
陕西省科技计划项目创新能力支撑计划“光电催化与碳中和创新团队”(2022TD-04)
长安大学2023年大学生创新训练项目(S202310710226)。