期刊文献+

基于时域自相关特征的短波数字调幅广播识别方法

Identification of the Drm Signal Via Time-Domain Correlation Features
原文传递
导出
摘要 短波段数字调幅广播(DRM)利用OFDM调制方式,实现了优异的抗衰落和抗干扰能力。与传统模拟调幅(AM)广播相比,DRM不但节省发射功率,还能提供近似于FM的音质,是未来短波广播的发展趋势。短波广播在经由电离层反射传播时,电离层扰动将对信号造成幅度调制、频率偏移及多径传播等影响,严重影响信号的时域特征和频域特征,进而对信号识别造成不利影响。针对此问题,详细分析了DRM信号的时域自相关特征。定量分析了DRM信号协议中特有的帧结构、循环前缀和增益导频等成分对自相关特征的影响,并通过实测数据对所提出的结论进行了验证。所提出的时域自相关方法具有运算速度快、抗电离层扰动的特点,能有效地应用在DRM信号识别领域,对做好未来短波广播频段的无线电监测有着重要意义。 Digital Radio Mondiale(DRM) utilizes OFDM modulation to achieve excellent anti-fading and anti-interference capabilities.Compared with the traditional analog amplitude modulation(AM) broadcasting,DRM possesses several advantages such as requiring less transmission power and providing.DRM is treated as the future method for shortwave broadcasting.Shortwave broadcasting usually propagates through ionospheric reflection.For the transmitted electromagnetic wavve,the ionospheric disturbances will cause amplitude modulation,frequency shift,and multipath propagation effects,which will seriously affect the time-domain and frequency-domain features of the signal,and thus causing difficulties in signal recognition.To solve this problem,this paper provides a detailed analysis of the time-domain autocorrelation features of DRM signals.Quantitative analysis is conducted on the relationship between the frame structures,cyclic prefixes,and gain pilots in the DRM signal protocol and the autocorrelation features.The proposed method is verified by the measured data.The proposed time-domain autocorrelation method requires small computational amount and is robust against ionospheric disturbances.The result of this paper can be effectively applied in DRM signal recognition,which is of great significance for radio monitoring in the shortwave broadcasting band.
作者 孙宇 韩琦 张弓 SUN Yu;HAN Qi;ZHANG Gong(Radio Monitoring Station of Heilongjiang Province,Harbin 150001,China;Harbin Institute of Technology,Harbin 150001,China;TP-LINK Technologies Co.,Ltd.,Shenzhen 518000,China)
出处 《自动化与仪器仪表》 2023年第12期89-92,共4页 Automation & Instrumentation
关键词 短波通信 数字调幅广播 时域自相关 特征提取 short wave communication digital radio mondiale time domain correlation feature identification
  • 相关文献

参考文献12

  • 1赵树杰,赵建勋编著..信号检测与估计理论[M].北京:清华大学出版社,2005:512.
  • 2杨小牛等著..软件无线电原理与应用[M].北京:电子工业出版社,2001:262.
  • 3张茜..基于高阶统计特性的调制信号识别[D].电子科技大学,2018:
  • 4王永志..数字调制信号的参数估计与调制识别技术的研究[D].哈尔滨工程大学,2019:
  • 5张玉梅..短波OFDM信号体制识别与参数估计[D].哈尔滨工程大学,2017:
  • 6万莎,徐彪.短波频段单载波和多载波信号识别[J].数字通信世界,2017(8):68-70. 被引量:2
  • 7郭琪..基于机器学习的电磁信号识别技术研究[D].北京邮电大学,2020:
  • 8石彦坤..基于深度学习的信号调制识别研究[D].哈尔滨工业大学,2020:
  • 9朱立为,黄知涛.多载波OFDM信号识别方法[J].系统工程与电子技术,2022,44(11):3522-3528. 被引量:3
  • 10黄晁,索朗措姆,赵向东.地面数字调频广播关键技术及应用[J].电视技术,2023,47(4):94-96. 被引量:1

二级参考文献17

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部