期刊文献+

基于量子衍生涡流算法和T⁃S模糊推理模型的储层岩性识别

Reservoir lithology identification based on quantum vortex search algorithm and T⁃S fuzzy reasoning model
下载PDF
导出
摘要 鉴于梯度下降法易陷入局部极值、普通群智能优化算法易早熟收敛,提出一种基于量子衍生涡流算法(Quantum Vortex Search Algorithm,QVSA)和T⁃S模糊推理模型的岩性识别方法,QVSA具有操作简单、收敛速度快、寻优能力强等优点,有助于T⁃S模糊推理模型获得最优参数配置,从而实现储层岩性的准确识别。首先利用具有全局搜索能力的QVSA优化T⁃S模糊推理模型的各种参数;然后利用主成分分析方法降低获取的地震属性维度;再利用优化的T⁃S模糊推理模型识别储层岩性。实验结果表明,利用反映储层特征的8个地震属性识别储层岩性时,所提方法的识别正确率达到92%,比普通BP网络方法高5.1%,同时查准率、查全率、F1分数等指标也较BP网络方法提升明显。 Since the gradient descent method is prone to local extremes,and ordinary swarm intelligence optimi⁃zation algorithms are prone to premature convergence,a lithology identification method based on the quantum vortex search algorithm(QVSA)and T⁃S fuzzy reasoning model is proposed.QVSA has the advantages of simple operation,fast convergence speed,and strong optimization ability,which helps the T⁃S fuzzy reasoning model obtain the optimal parameter configuration and achieve accurate identification of reservoir lithology.Firstly,QVSA with global search capability is used to optimize various parameters of the T⁃S fuzzy reasoning model.Then,the principal component analysis method is used to reduce the dimensionality of the acquired seis⁃mic attributes,and the optimized T⁃S fuzzy reasoning model is utilized to identify the reservoir lithology.The experimental results show that when the eight seismic attributes reflecting the reservoir characteristics are used to identify the reservoir lithology,the identification accuracy of the proposed method reaches 92%,which is 5.1%higher than that of the ordinary BP network method.At the same time,the precision,recall,F1 score,and other indicators are improved significantly compared with those of the BP network method.
作者 赵娅 管玉 李盼池 王伟 ZHAO Ya;GUAN Yu;LI Panchi;WANG Wei(School of Computer and Information Technology,Northeast Petroleum University,Daqing,Heilongjiang 163318,China;School of Petroleum Engineering,Guangdong University of Petrochemical Technology,Maoming,Guangdong 525000,China)
出处 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期23-30,共8页 Oil Geophysical Prospecting
基金 国家自然科学基金项目“基于计算智能的油田措施规划模型及优化算法研究”(61702093) P黑龙江省自然科学基金项目“基于深度学习和量子计算的不同沉积微相储层水淹特征识别方法研究”(LH2022F006)联合资助。
关键词 储层岩性识别 量子衍生涡流算法 T⁃S 模糊推理模型 模糊集 地震属性 reservoir lithology identification quantum vortex search algorithm T⁃S fuzzy reasoning model fuzzy set seismic attribute
  • 相关文献

参考文献10

二级参考文献78

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部