摘要
在地震数据处理中,多次波的存在会对地震数据成像和地震资料解释带来影响,如何有效地压制多次波干扰是地震勘探中的重要问题。抛物线Radon变换因其高效的特点被广泛应用于多次波压制中,但在野外地震数据采集时,炮检距的有限性会导致变换域中的能量扩散,产生假象,使多次波压制达不到理想的效果。针对此问题,提出一种基于L_(1/2)正则化的稀疏反演高分辨抛物线Radon变换,并应用广义迭代收缩算法(generalized iterated shrinkage algorithm,GISA)进行求解。研究结果表明,L_(1/2)正则化有很强的稀疏约束能力,能提高解的稀疏度,改进信噪分离的效果。与最小二乘反演和基于L_(1)正则化的稀疏反演相比,基于L_(1/2)正则化的稀疏反演高分辨抛物线Radon变换能更有效地压制多次波,并确保了重构数据与原始数据的一致性。
In the context of seismic data processing,the presence of multiples poses inherent challenges to the imaging and interpretation of seismic data.The effective suppression of these multiples stands as a key issue in seismic exploration.Leveraging its high efficiency,the parabolic Radon transform emerges as a widely used technique for multiple suppression.However,in field seismic data acqisition,due to the limited offset,energy diffusion and illusions reduce the effect of multiple suppression in the Radon domain.In response to this challenge,we propose a L_(1/2)-regularized high-resolution parabolic Radon transform with sparse inversion,where the inverse problem is solved by generalized iterated shrinkage algorithm(GISA).The L_(1/2)regularization chosen for its robust sparse constraint capabilities plays an important role in enhancing the solution sparsity and improving the signal-noise separation.Compared with the least square inversion and the sparse inversion method based on L_(1)regularization,the L_(1/2)-regularized sparse inversion of using the high-resolution parabolic Radon transform can suppress multiples effectively and ensure the consistency between the reconstructed data and the original data.
作者
吴秋莹
胡斌
刘财
高锐
Wu Qiuying;Hu Bin;Liu Cai;Gao Rui(College of GeoExploration Science and Technology,Jilin University,Changchun 130026,China;School of Earth Sciences and Engineering,Sun Yat-Sen University,Guangzhou 510275,China;Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China)
出处
《吉林大学学报(地球科学版)》
CAS
CSCD
北大核心
2024年第1期323-336,共14页
Journal of Jilin University:Earth Science Edition
基金
国家自然科学基金项目(41874125)。