期刊文献+

Learning the right channel in multimodal imaging: automated experiment in piezoresponse force microscopy

原文传递
导出
摘要 We report the development and experimental implementation of the automated experiment workflows for the identification of thebest predictive channel for a phenomenon of interest in spectroscopic measurements. The approach is based on the combinationof ensembled deep kernel learning for probabilistic predictions and a basic reinforcement learning policy for channel selection. Itallows the identification of which of the available observational channels, sampled sequentially, are most predictive of selectedbehaviors, and hence have the strongest correlations. We implement this approach for multimodal imaging in piezoresponse forcemicroscopy (PFM), with the behaviors of interest manifesting in piezoresponse spectroscopy. We illustrate the best predictivechannel for polarization-voltage hysteresis loop and frequency-voltage hysteresis loop areas is amplitude in the model samples. Thesame workflow and code are applicable for any multimodal imaging and local characterization methods.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期2008-2015,共8页 计算材料学(英文)
基金 This effort(implementation in SPM,measurement,data analysis)was primarily supported by the center for 3D Ferroelectric Microelectronics(3DFeM),an Energy Frontier Research Center funded by the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences under Award Number DE-SC0021118 This research(ensemble-DKL)was supported by the Center for Nanophase Materials Sciences(CNMS),which is a US Department of Energy,Office of Science User Facility at Oak Ridge National Laboratory This work was also supported by MEXT Program:Data Creation and Utilization Type Material Research and Development Project Grant Number JPMXP1122683430.
关键词 AUTOMATED POLICY MODAL
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部