期刊文献+

A位有序四重钙钛矿氧化物:结构、物性和展望

A-Site Ordered Quadruple Perovskite Oxides:Structures,Properties and Prospects
下载PDF
导出
摘要 A位有序四重钙钛矿氧化物AA′3B4O12具有丰富的物理性质和优异的材料性能,是当今凝聚态物理和材料科学的重要研究对象。相较于简单的ABO3型钙钛矿,在A位有序四重钙钛矿氧化物中,3/4的A位离子被过渡金属离子A′所取代,形成了1∶3的A/A′有序结构。因此,A位有序四重钙钛矿氧化物中的磁-电相互作用不再局限于B位子晶格内部,新颖的A′-A′、A′-B等磁-电相互作用也随之产生,从而展现出许多新现象和新物理机制,并为未来的实际应用提供了材料基础。围绕几种具有代表性的A位有序四重钙钛矿氧化物,回顾其研究脉络,对其晶体结构、物理性质和内在机理进行简单介绍,并对这类材料体系的研究方向和应用前景做出一些展望。 A-site ordered quadruple perovskite oxides with a formula as AA′3B4O12 exhibit multiple physical properties and superior performances,thus act as important subjects of current condensed matter physics and material science.Compared to the simple ABO3 perovskite,in the A-site ordered quadruple perovskite three quarters of the A atoms are replaced by transition metal Aʹ,forming ordered A/Aʹoccupancy with a 1∶3 ratio.As a result,the electric and magnetic interactions such as Aʹ-Aʹand Aʹ-B can occur,leading to novel phenomena and new physics.Here we focus on several representative A-site ordered quadruple perovskites,recall their researches,briefly introduce their structures,physical properties and inner mechanisms,and discuss the opportunities for both fundamental studies and potential applications.
作者 王潇 刘哲宏 卢达标 皮茂材 潘昭 龙有文 WANG Xiao;LIU Zhehong;LU Dabiao;PI Maocai;PAN Zhao;LONG Youwen(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,Guangdong,China)
出处 《高压物理学报》 CAS CSCD 北大核心 2024年第1期1-24,共24页 Chinese Journal of High Pressure Physics
基金 国家重点研发计划(2021YFA1400300) 国家自然科学基金(11934017,12261131499,11921004,12304159,12204516) 北京市自然科学基金(Z200007) 中国科学院先导B项目(XDB33000000)。
关键词 高压制备 钙钛矿氧化物 介电性 电荷有序 多铁性 半金属 high-pressure synthesis perovskite oxide dielectricity charge order multiferroics half metal
  • 相关文献

参考文献3

二级参考文献83

  • 1Wul B 1946 Nature 157 808. 被引量:1
  • 2Shirane G, Pepinsky R and Frazer B C 1955 Phys. Rev. 97 1179. 被引量:1
  • 3Matthias B and Hippel A V 1948 Phys. Rev. 73 1378. 被引量:1
  • 4Weaver H E 1959 J. Phys. Chem. Solids 11 274. 被引量:1
  • 5Spaldin N A, Cheong S W and Ramesh R 2010 Physics Today 63 38. 被引量:1
  • 6Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M E, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G and Ratcliff W D 2015 Phys. Rev. Lett. 114 217602. 被引量:1
  • 7Schooley J F, Hosler W R and Cohen M L 1964 Phys. Rev. Lett. 12 474. 被引量:1
  • 8Raub C J, Sweedler A R, Jensen M A, Broadston S and Matthias B T 1964 Phys. Rev. Lett. 13 746. 被引量:1
  • 9Karppinen M and Yamauchi H 1999 Mater. Sci. Eng., R 26 51. 被引量:1
  • 10Helmolt R V, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部