期刊文献+

基于注意力机制改进的YOLOv7服装缝线疵点检测方法

Improved YOLOv7 garment stitch fault detection method based on attention mechanism
下载PDF
导出
摘要 针对目前肉眼检测服装缝线疵点效率低下、成本较高、准确率不高、容易出现漏检和误检等问题,文章利用深度学习的方式对服装缝线疵点进行实时检测,构建了一个服装缝线疵点检测的数据集,包含了常见的服装缝线疵点类型,提出了一种基于注意力机制的YOLOv7算法SK-YOLOv7,在YOLOv7的骨干网络添加3个SK模块,以增强主干网络的特征提取能力,并引入CBAM-YOLOv7和SE-YOLOv7算法进行对比实验。实验结果表明:SK-YOLOv7具有较高的查准率及查全率,平均检测精度也有所提高。SK-YOLOv7相较于CBAM-YOLOv7和SE-YOLOv7在缝线检测上表现更好。文章对数据集采用不同的标记方式进行对比测试,发现对疵点区域进行一次标记的方法会导致特征大量丢失,而对疵点区域内进行分块标记的方法表现出了更好的检测效果。综合实验结果得出,基于注意力机制改进的YOLOv7服装缝线疵点检测方法是可行的,可以较好地推动纺织服装检测行业的发展进步。 Aiming at the problems of low efficiency,high cost,low accuracy,and easy to miss and mis-check in the inspector′s naked eye inspection method,deep learning was used in this paper to detect clothing stitch defects in real time.A dataset for garment stitch fault detection was constructed in this paper,which contains common types of garment stitch faults.In addition,an improved attention mechanism of YOLOv7 algorithm SK-YOLOv7 was proposed,three SK modules were added to the backbone network of YOLOv7 to enhance the feature extraction capability of the backbone network,and CBAM-YOLOv7 and SE-YOLOv7 were introduced for comparison experiments.The experimental results show that SK-YOLOv7 has a higher detection accuracy and improved detection completeness as well as mean average precision.SK-YOLOv7 performs better in stitch detection compared to CBAM-YOLOv7 and SE-YOLOv7.In addition,different marking methods were used to compare the dataset.The method of marking the defective area once resulted in a large number of lost features,while the method of marking the defective area in chunks showed a better detection result.The results of the comprehensive experiments are judged that the proposed method for detecting garment stitch faults is fully feasible and can better promote the development of the textile and garment testing industry.
作者 束方盛 徐增波 鲍禹辰 SHU Fangsheng;XU Zengbo;BAO Yuchen(School of Textiles and Fashion,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《毛纺科技》 CAS 北大核心 2024年第1期107-115,共9页 Wool Textile Journal
关键词 目标检测 YOLOv7 注意力机制 深度学习 服装缝线 疵点检测 object detection YOLOv7 attention mechanism deep learning garment stitch fault detection
  • 相关文献

参考文献7

二级参考文献109

  • 1蔡鹏,杨磊,罗俊丽.一种基于卷积神经网络模型融合的织物疵点检测方法[J].北京服装学院学报(自然科学版),2020,40(1):55-62. 被引量:5
  • 2杨彬蔚,陆系群,陈纯.一种纺织印染图案的多尺度彩色分割算法[J].浙江大学学报(工学版),2005,39(4):530-533. 被引量:7
  • 3诸葛振荣,徐敏,刘洋飞.基于Mean Shift的织物图像分割算法[J].纺织学报,2007,28(10):108-111. 被引量:16
  • 4XIE X. A review of recent advances in surface defect detection using texture analysis techniques [ J ]. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3) : 1 -22. 被引量:1
  • 5JING J, LI H, LIP. Combined fabric defects detection approach and quadtree decomposition [ J ]. Journal of Industrial Textiles ,2012,41 (4) :331 - 334. 被引量:1
  • 6NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection: a review [ J ]. Image and Vision Computing, 2011, 29(7) : 442 -458. 被引量:1
  • 7GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions [ J ]. Numerische Mathematik, 1970, 14 (5) : 403 - 420. 被引量:1
  • 8KALNINS Y R, PAKALNITE I. Singular value decomposition of images with the simple elements [ J]. Computer Modelling and New Technologies, 2011,15(1): 49 -54. 被引量:1
  • 9CHEN S, FENG J. Research on detection of fabric defects based on singular value decomposition [ C ]// IEEE International Conference on Information and Automation (ICIA). Harbin: [s. n.], 2010: 857- 860. 被引量:1
  • 10CHANDRA J K, DATTA A K. Detection of defects in fabrics using subimage-based singular value decomposition [ J ]. Journal of the Textile Institute, 2013, 104(3): 296-230. 被引量:1

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部