期刊文献+

融合半波注意力机制的低光照图像增强算法研究 被引量:1

Research on image enhancement algorithm of low illumination image based on half wave attention mechanism
下载PDF
导出
摘要 针对当前基于卷积神经网络的低光照图像增强算法(CycleGAN,Retinex-Net等)存在模型参数过大、内存消耗高、图像复原质量不佳等问题,在轻量级算法IAT基础上,提出了融合半波注意力模块的低光照图像增强算法HBTNet。为了改善网络频繁卷积造成的空间信息损失,在网络中引入半波注意力模块,可有效获得小波域的特性,丰富上下文信息,提高特征提取能力。通过引入MS-SSIM损失函数用来保存图像的边缘和细节信息,提升图像恢复的质量。实验结果表明,在LOL数据集上HBTNet相较于IAT算法PSNR提升了2.69%,SSIM提升了5.56%。HBTNet算法的模型参数量仅为0.11 M,可以满足终端用户实时性要求。 In order to improve the low light image enhancement algorithm based on convolutional neural network(CycleGAN,Retinex-Net,etc.),which has the problems of excessive model parameters,high memory consumption and poor image recovery quality,we propose the low light image enhancement algorithm HBTNet incorporating the half-wave attention module based on the lightweight algorithm IAT.In order to improve the spatial information loss caused by frequent convolution of the network,the half-wave attention module is introduced into the network,which can effectively obtain the characteristics of wavelet domain,enrich the contextual information and improve the feature extraction ability.The quality of image recovery is improved by introducing MS-SSIM loss function used to preserve the edge and detail information of images.The experimental results show that HBTNet improves PSNR by 2.69%and SSIM by 5.56%compared with IAT algorithm on LOL dataset.the number of model parameters of HBTNet algorithm is only 0.11 M,which can meet the real-time requirements of end users.
作者 胡聪 陈绪君 吴雨锴 HU Cong;CHEN Xujun;WU Yukai(College of Physical Science and Technology,Central China Normal University,WuHan 430079,China)
出处 《激光杂志》 CAS 北大核心 2024年第1期109-114,共6页 Laser Journal
基金 国家自然科学基金(No.62101204) 湖北省自然科学基金(No.2020CFB474)。
关键词 图像增强 半波注意力机制 上下文信息 MS-SSIM损失函数 image enhancement half wave attention mechanism contextual information MS-SSIM loss function
  • 相关文献

参考文献4

二级参考文献20

  • 1杨晓敏,吴炜,干宗良,严斌宇,张莹莹.一种基于稀疏字典和残余字典的遥感图像超分辨重建算法[J].四川大学学报(工程科学版),2015,47(3):71-76. 被引量:5
  • 2Edwin H Land. The Retinex Theory of Color Vision [ J ]. Scientific American, 1977,237 : 108-128. 被引量:1
  • 3Edwin H Land. An Alternative Technique for the Computation of the Designator in the Retinex Theory of Color Vision [ C ]. USA : Proc of the National Academy of Science, 1986. 3078- 3080. 被引量:1
  • 4D J Jobson, Z Rahman, G A Woodell. Properties and Performance of a Center/Surround Retinex[J]. IEEE Transactions on Image Processing, 1997,6 ( 3 ) :451-462. 被引量:1
  • 5D H Brainard, B A Wandell. Analysis of the Retinex Theory of Color Vision[ J]. Journal of the Optical Society of America, 1986,3(10) :1651-1661. 被引量:1
  • 6D J Jobson, Z Rahman, G A Woodell. Retinex Image Processing: Improved Fidelity to Direct Visual Observation[ C]. Scottsdale, USA: Proceedings of IS&T/SID 4th Color Imaging Conference: Color Science, Systems and Applications, 1996.124-126. 被引量:1
  • 7B Funt,K Barnard,et al. Luminance-Based Multi-Scale Retinex[ C].Kyoto, Japan : Proceedings of AIC Color 97,1997. 330- 333. 被引量:1
  • 8Z Rahman, D J Jobson, G A Woodell. Multi-scale Retinex for Color Image Enhancement [ C ]. Lausanne, Switzerland: Proceedings of International Conference on Image Processing, 1996. 1003-1006. 被引量:1
  • 9Funt B V, et al. Retinex in MATLAB[ C ]. Scottsdale, USA:Proc of IS&T/SID Eighth Color Imaging Conference,2000.112-121. 被引量:1
  • 10朱立新,王平安,夏德深.基于梯度场均衡化的图像对比度增强[J].计算机辅助设计与图形学学报,2007,19(12):1546-1552. 被引量:37

共引文献146

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部