摘要
得益于荧光标记技术,远场超分辨显微成像技术的不断发展为人们打开了一道微观世界的大门。远场超分辨光学显微镜也成为现代医学、生命科学等领域研究发展的重要工具和设备。但是相比之下,远场无标记显微成像技术发展却相对缓慢。为此,本文提出了一种采用光纤器件的集成化差分显微成像方法。该方法通过特制的光纤模式选择耦合器(MSC)实现了差分成像系统中空心光斑的生成,并解决了空心光斑和实心光斑严格对准困难的问题。搭建了一套结构简单紧凑,高度集成化的无标记显微成像系统。实验中,采用直径为150 nm的金颗粒和最小间距约50 nm的无标记聚合物线对结构对系统进行成像测试,分辨率相较传统扫描共聚焦显微镜大幅提升。
Far-field super-resolution microscopic imaging technology based on fluorescent labels opened a gate to the microscopic world,which has become an important tool in the research of modern medicine and life science.However,the development of far-field unlabeled super-resolution microscopy is relatively slow.Here,an integrated differential microscopic imaging method using optical fiber devices is proposed in this article.The generation of hollow spots in the differential imaging system is realized by a special fiber mode selection coupler(MSC).The problem of strict alignment between hollow and solid spots is naturally solved in this method.A highly integrated label-free microscopic imaging system was established.In experiments,gold particles with a diameter of 150 nm and unlabeled polymer lines with a minimum spacing of about 50 nm were imaged to test the imaging system.The resolution of the imaging system shows great improvement compared to conventional scanning confocal microscopy.
作者
罗昊
侯梦蝶
徐良
杨臻垚
匡翠方
曾祥龙
朱大钊
Luo Hao;Hou Mengdie;Xu Liang;Yang Zhenyao;Kuang Cuifang;Zeng Xianglong;Zhu Dazhao(Research Center for Intelligent Chips and Devices,Zhejiang Lab,Hangzhou,Zhejiang 311121,China;State Key Laboratory of Extreme Photonics and Instrumentation,College of Optical Science and Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China;Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200444,China)
出处
《光电工程》
CAS
CSCD
北大核心
2023年第12期1-12,共12页
Opto-Electronic Engineering
基金
浙江省自然科学基金探索青年项目(LQ22F050017)
国家自然科学基金青年科学基金项目(62105298)
中国博士后科学基金面上项目(2021M692954)
之江实验室重大项目(2020MC0AE01)。
关键词
无标记显微成像
光纤模式耦合
差分扫描成像
涡旋光调制
label-free microscopic imaging
fiber mode coupling
differential scanning imaging
vortex beam modulation