期刊文献+

点云投影结合轻量化卷积神经网络实现三维成像声呐快速目标分类

Point cloud projection combined with lightweight convolutional neural network realizes fast target classification of 3D imaging sonar
下载PDF
导出
摘要 三维成像声呐的成像结果是三维点云,基于点云的三维成像声呐目标分类方法具有网络结构复杂、计算量大的特点。针对这一问题提出了一种将三维成像声呐成像结果从三维点云投影至二维图像的方法,并且使用轻量化卷积神经网络实现了三维成像声呐快速目标分类。该方法首先对三维成像声呐波束形成后的波束域数据进行最大值滤波和阈值滤波,以降低点云数据维度;接着,依据三维成像声呐的波束方向,将点云投影为深度图和强度图,分别保存点云的位置信息和强度信息;然后,利用深度图和强度图分别作为第一个通道和第二个通道构建混合通道图,将混合通道图作为目标分类网络的输入,从而将三维点云的目标分类问题转换为二维图像的目标分类问题;最后使用MobileNetV2网络实现了三维成像声呐快速目标分类。实验结果表明,提出的投影方法可以用二维图像分类网络完成三维成像声呐点云的目标分类任务;而且训练过程中混合通道图比单独的深度图和强度图收敛速度更快,结合目标分类网络可以实时进行目标分类,在真实数据集上分类正确率达到了91.13%。 The imaging result of the three-dimensional(3D)imaging sonar is a point cloud,and the network of point cloud target recognition is characterized by complex network structure and large computation.We propose a method to project the imaging result of three-dimensional imaging sonar from a point cloud to an image,and use lightweight convolutional neural networks to achieve fast target classification for three-dimensional imaging sonar.Firstly,the method performs maximumfiltering and thresholdfiltering on the beam domain data after the beamforming of the 3D imaging sonar beam to reduce the dimensionality of the point cloud.Next,based on the beam direction of the 3D imaging sonar,the point cloud is projected to a depth image and an intensity image to save the point cloud position information and intensity information respectively.Then,the mixed image is constructed using the depth image and the intensity image as thefirst channel and the second channel,and the mixed image is used as the input of the target classification network,thus converting the target classification problem of 3D point clouds into the target classification problem of images.Finally,3D imaging sonar fast target classification was implemented using MobileNetV2.The experimental results show that the projection method proposed in this paper can be used to complete the target classification task of three-dimensional imaging sonar point cloud by an image classification network.Moreover,the convergence rate of the mixed channel image is significantly faster than that of the separate intensity image and depth image,and the target classification can be conducted in real time with the combination of the target recognition network,achieving an accuracy of 91.13%on the real data set.
作者 任露露 尹力 巩文静 李宝奇 黄海宁 REN Lulu;YIN Li;GONG Wenjing;LI Baoqi;HUANG Haining(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《应用声学》 CSCD 北大核心 2024年第1期47-57,共11页 Journal of Applied Acoustics
基金 中国科学院国防科技重点实验室基金项目(CXJJ-20S035)。
关键词 三维成像声呐 波束形成 声呐图像处理 目标分类 Three-dimensional imaging sonar Beamforming Sonar image processing Object classification
  • 相关文献

参考文献5

二级参考文献45

  • 1陈波,杨阳,沈田双.一种基于不变矩和SVM的图像目标识别方法[J].仪器仪表学报,2006,27(z3):2093-2094. 被引量:11
  • 2梁晓云,章品正,王蔚林,曾卫明,罗立民,王立功,周正东.Hausdorff距离与GA相结合的医学图像配准[J].仪器仪表学报,2004,25(z1):535-537. 被引量:2
  • 3FORESTI G L, GENTILI S. A vision based system for object detection in underwater images [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2001,14(2) :167-188. 被引量:1
  • 4Vlqq'ORIO M, ANDREA T. Confidence-based approach to enhancing underwater acoustic image formation [ J ]. IEEE Trans on Image Proeessing, 1999,82 (2) :270-285. 被引量:1
  • 5MIGNOTYE M. Markov random field and fuzzy logic mod- eling in sonar imagery: Application to the classification of underwater floor[ J]. Computer Vision and Image Under- standing,2000,79 ( 1 ) :4-24. 被引量:1
  • 6DANIEL S. Side-scan sonar image matching [ J ]. IEEE Journal of Oceanic Engineering, 1998,23 ( 3 ) : 245-259. 被引量:1
  • 7LIU CH CH, SANG EN F. Application of morphological fiher in underwater acoustic-image processing system [ C]. Papers of the 3rd International workshop on Acous- tical Engineering and Techonology,2002:207-210. 被引量:1
  • 8KASS M, WITKIN A,TERZOPOULOS D. Snakes: Ac- tive contour models [ J ]. International Journal of Comput- er Vision, 1987,1 (4) : 321-331. 被引量:1
  • 9OSHER S, SETHIAN J A. Fronts propagating with cur- vature-de-pendent speed: Algorithms based on Hamilton- Jacobin formulations [ J ]. Journal of Computational Phys- ics, 1988,79 ( 1 ) : 12-49. 被引量:1
  • 10LI C, XU C Y. Level set evolution without reinitializa- tion: A new variational formulation [ C 1- IEEE Interna- tional Conference on Computer Vision and Pattern Recog- nition(CVPR) , San Diego ,2005,1:4302-436. 被引量:1

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部