期刊文献+

二维三次映射的混沌动力学

Chaotic dynamics for two dimensional cubic mapping
下载PDF
导出
摘要 为了研究二维三次映射的混沌动力学,运用Moser定理和多项式零点斜率的性质,证明映射存在Smale马蹄,并且映射在不变集上拓扑共轭于三符号动力系统.计算不动点和2周期点的Lyapunov指数谱表明,它们的最大Lyapunov指数均大于零. Chaotic dynamics was investigated for a class of two dimensional cubic mapping.By Moser′s theorem,as well as the derivative properties on zeros of polynomial,the Smale horseshoe was proved for the two dimensional cubic mapping.Moreover,the cubic mapping on horseshoe was showed topologically conjugate to the shift map on sequence space of three symbols.The largest Lyapunov exponents at the fixed points and two periodic points were proved to be all positive.
作者 陈凤娟 丁文豪 钟溢 CHEN Fengjuan;DING Wenhao;ZHONG Yi(School of Mathematical Sciences,Zhejiang Normal University,Jinhua 321004,China;College of Sciences,Ningbo University of Technology,Ningbo 315211,China)
出处 《浙江师范大学学报(自然科学版)》 2024年第1期1-8,共8页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11471289)。
关键词 二维三次映射 SMALE马蹄 Moser定理 混沌 two dimensional cubic mapping Smale horseshoe Moser′s theorem chaos
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部