期刊文献+

Support Recovery of Gaussian Graphical Model with False Discovery Rate Control

原文传递
导出
摘要 This paper focuses on the support recovery of the Gaussian graphical model(GGM)with false discovery rate(FDR)control.The graceful symmetrized data aggregation(SDA)technique which involves sample splitting,data screening and information pooling is exploited via a node-based way.A matrix of test statistics with symmetry property is constructed and a data-driven threshold is chosen to control the FDR for the support recovery of GGM.The proposed method is shown to control the FDR asymptotically under some mild conditions.Extensive simulation studies and a real-data example demonstrate that it yields a better FDR control while offering reasonable power in most cases.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第6期2605-2623,共19页 系统科学与复杂性学报(英文版)
基金 supported partially by the China National Key R&D Program under Grant Nos.2019YFC1908502,2022YFA1003703,2022YFA1003802,and 2022YFA1003803 the National Natural Science Foundation of China under Grant Nos.11925106,12231011,11931001,and 11971247。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部