期刊文献+

AI-Based Hybrid Models for Predicting Loan Risk in the Banking Sector

原文传递
导出
摘要 Every real-world scenario is now digitally replicated in order to reduce paperwork and human labor costs.Machine Learning(ML)models are also being used to make predictions in these applications.Accurate forecasting requires knowledge of these machine learning models and their distinguishing features.The datasets we use as input for each of these different types of ML models,yielding different results.The choice of an ML model for a dataset is critical.A loan risk model is used to show how ML models for a dataset can be linked together.The purpose of this study is to look into how we could use machine learning to quantify or forecast mortgage credit risk.This phrase refers to the process of evaluating massive amounts of data in order to derive useful information for making decisions in a variety of fields.If credit risk is considered,a method based on an examination of what caused and how mortgage credit risk affected credit defaults during the still-current economic crisis of 2021 will be tried.Various approaches to credit risk calculation will be examined,ranging from the most basic to the most complex.In addition,we will conduct a case study on a sample of mortgage loans and compare the results of three different analytical approaches,logistic regression,decision tree,and gradient boost to see which one produced the most commercially useful insights.
出处 《Big Data Mining and Analytics》 EI CSCD 2023年第4期478-490,共13页 大数据挖掘与分析(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部