期刊文献+

基于遗传算法的子阵划分和子阵权值联合优化

Joint Optimization of Subarray Division and Subarray Weights Based on Genetic Algorithm
下载PDF
导出
摘要 雷达中经常采取和波束在阵元级最优形成、差波束在子阵级次优形成的波束形成方式,此时差波束的子阵划分和子阵权值需要联合优化解决。文中提出了基于遗传算法的子阵划分和子阵权值联合优化方法。在子阵数量预先确定的前提下,该方法对子阵划分采用Grefenstette编码,以避免二进制编码的个体缺失或重复问题,对子阵权值则采用二进制编码,两种编码构成混合染色体用于优化迭代,并给出了遗传算法的迭代实现过程。仿真结果表明:所得到的差波束方向图主瓣形状良好,副瓣分布均匀,无明显栅瓣,达到了预期目的。 In radar the sum beam is often optimally formed at the element level,and the difference beam is suboptimally formed at the subarray level.In this case,the subarray division and subarray weights of the difference beam need to be jointly optimized.The joint optimization method of subarray division and subarray weights based on genetic algorithm is presented in this paper.On the premise that the number of subarrays is given beforehand,the Grefenstette coding is applied for the subarray division to avoid the individual deletion or duplication related to the binary coding,and the binary coding is done for the subarray weights.Both codings constitute the mixed chromosome,and the iteration process of the genetic algorithm is provided.The simulation result shows that the mainlobe shape of the optimized difference beam pattern is well,the distribution of sidelobes is even,and distinct grating lobes are not found,therefore the desired aim is achieved.
作者 陈希信 龙伟军 CHEN Xixin;LONG Weijun(Electrical Engineering College Nanjing Vocational University of Industry Technology,Nanjing Jiangsu 210023,China;School of Electronics&Information Engineering,Nanjing University of Information Science&Technology,Nanjing Jiangsu 210044,China)
出处 《现代雷达》 CSCD 北大核心 2023年第12期75-78,共4页 Modern Radar
基金 南京工业职业技术大学引进人才科研启动基金资助项目(YK21-02-04)。
关键词 子阵划分 差波束 遗传算法 Grefenstette编码 subarray division difference beam genetic algorithm Grefenstette coding
  • 相关文献

参考文献7

二级参考文献37

  • 1陈子欢,刘刚,蒋宁.一种新的子阵结构及其自适应性能分析[J].电子信息对抗技术,2006,21(3):33-37. 被引量:7
  • 2胡航,景秀伟,潘向荣.二维子阵级相控阵空间谱估计方法[J].电子学报,2007,35(3):415-419. 被引量:16
  • 3邱力军,周智敏,梁甸农.稀布相控阵雷达子阵划分方法研究[J].系统工程与电子技术,1997,19(7):31-37. 被引量:9
  • 4Nickel U. Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression. Proc. IEEE International Radar Conference, Alexandria, USA, 1995: 714-719. 被引量:1
  • 5王小平,曹立明.进化算法-理论应用与软件实现.西安:西安交通大学出版社,2002:116-117. 被引量:1
  • 6Ansell D W and Hughes E J. Use of multi-objective genetic algorithms to optimise the excitation and subarray division of multifunction radar antennas. Proc. IEE colloquium on multifunction radar and sonar sensor management techniques England, 2001: 8/1-8/4. 被引量:1
  • 7Lopez P, Rodriguez J A, and Ares F, et al.. Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights. IEEE Transactions on Antennas and Propagation, 2001, 49(11): 1606-1608. 被引量:1
  • 8Golino G. Improved genetic algorithm for the design of the optimal antenna division in sub-arrays: A multi-objective genetic algorithm. Proc. IEEE International Radar Conference, Washington, USA, May 2005: 629-634. 被引量:1
  • 9Fonseca C M and Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation. Proc. 5th International Conference on Genetic Algorithms, San Mateo, USA, 1993: 416-423. 被引量:1
  • 10Nickel,U R O.Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression .Record of the IEEE 1995 International Radar Conference .Alexandria,USA:IEEE Press,1995.714-719. 被引量:1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部