期刊文献+

Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL

原文传递
导出
摘要 Prediction of the response of cancer patients to different treatments and identification of biomarkers of drug response are two major goals of individualized medicine.Here,we developed a deep learning framework called TINDL,completely trained on preclinical cancer cell lines(CCLs),to predict the response of cancer patients to different treatments.TINDL utilizes a tissue-informed normalization to account for the tissue type and cancer type of the tumors and to reduce the statistical discrepancies between CCLs and patient tumors.Moreover,by making the deep learning black box interpretable,this model identifies a small set of genes whose expression levels are predictive of drug response in the trained model,enabling identification of biomarkers of drug response.Using data from two large databases of CCLs and cancer tumors,we showed that this model can distinguish between sensitive and resistant tumors for 10(out of 14)drugs,outperforming various other machine learning models.In addition,our small interfering RNA(siRNA)knockdown experiments on 10 genes identified by this model for one of the drugs(tamoxifen)confirmed that tamoxifen sensitivity is substantially influenced by all of these genes in MCF7 cells,and seven of these genes in T47D cells.Furthermore,genes implicated for multiple drugs pointed to shared mechanism of action among drugs and suggested several important signaling pathways.In summary,this study provides a powerful deep learning framework for prediction of drug response and identification of biomarkers of drug response in cancer.The code can be accessed at https://github.com/ddhostallero/tindl.
出处 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第3期535-550,共16页 基因组蛋白质组与生物信息学报(英文版)
基金 supported by the New Frontiers in Research Fund(NFRF)of Government of Canada(Grant No.NFRFE-2019-01290 to Amin Emad and Junmei Cairns) the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.RGPIN-2019-04460 to Amin Emad) the McGill Initiative in Computational Medicine(MiCM)to Amin Emad.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部