期刊文献+

基于梯度提升决策树算法的钻井工况识别方法 被引量:1

Drilling condition identification method based on gradient boosting decision tree
下载PDF
导出
摘要 钻井工况的精确识别是保证作业安全与提高钻井效率的重要措施,而目前钻井工况普遍依据人工经验公式与阈值法进行判别,存在数据流大、识别精度低、决策速度慢等问题。为了提高钻井工况识别效率,结合领域知识建立井深变化与钻头变化2个重要特征,针对现场数据传输的不稳定性问题,采用移动窗口方法选择最适窗口提升数据稳定性,并搭建了基于多种算法的智能钻井工况识别模型,利用评价指标进行分析与模型选择。研究结果表明,基于LightGBM的模型在钻井作业工况识别方面表现较优,识别精度高达98.9%,处理时间仅4.6 s,充分证明了此方法的高效性和可靠性,并为钻井工况的高效识别提供重要理论和技术支撑。 Drilling condition identification is a crucial measure to ensure operational safety and improve drilling efficiency.Currently,drilling conditions are commonly determined based on manual empirical formulas and threshold methods,leading to issues such as large data volume,low identification accuracy and slow decision-making speed.In order to enhance the efficiency of drilling condition identification,two important features,namely well depth variation and drill bit variation,were established by integrating domain knowledge.In view of the instability of on-site data transmission,a mobile window method was employed to select the most suitable window,thereby improving data stability.Additionally,an intelligent drilling condition identification model was constructed based on multiple algorithms,which uses evaluation indicators for analysis and model selection.The research results show that the model based on LightGBM performs exceptionally well in drilling operation condition identification,achieving a high accuracy of 98.9%with a processing time as short as 4.6 seconds.This affirms the efficiency and reliability of the proposed method,providing crucial theoretical and technical support for the efficient identification of drilling conditions.
作者 毛光黔 宋先知 丁燕 崔猛 刘雨龙 祝兆鹏 MAO Guangqian;SONG Xianzhi;DING Yan;CUI Meng;LIU Yulong;ZHU Zhaopeng(College of Petroleum Engineering,China University of Petroleum(Beijing),Beijing 102249,China;PetroChina Engineering Technology R&D Company Limited,Beijing 102206,China)
出处 《石油钻采工艺》 CAS 北大核心 2023年第5期532-539,共8页 Oil Drilling & Production Technology
基金 国家重点研发计划“变革性技术关键科学问题”子课题“复杂油气智能钻井理论与方法”(编号:2019YFA0708300) 中国石油天然气集团配套课题“复杂地层智能化破岩机理与导向控制方法”(编号:2021DQ0503) 中国石油天然气集团基础前瞻性重大科技专项攻关课题“地面-井下多目标协同优化控制机制”(编号:2023ZZ0601)。
关键词 钻井工况 智能识别 LightGBM 移动窗口 特征建立 领域知识 drilling conditions intelligent identification LightGBM mobile window feature establishment domain knowledge
  • 相关文献

参考文献16

二级参考文献178

共引文献486

同被引文献29

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部