期刊文献+

基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术

Human Anomalous Gait Termination Recognition via Through-the-wall Radar Based on Micro-Doppler Corner Features and Non-Local Mechanism
下载PDF
导出
摘要 穿墙雷达能够穿透建筑物墙体,实现室内人体目标探测。利用深度学习提取不同肢节点的微多普勒特征,可以有效辨识障碍物后的人体行为。但是,当生成训练、验证集与生成测试集的受试者不同时,基于深度学习的行为识别方法测试准确率相对验证准确率往往较低,泛化能力较差。因此,该文提出一种基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术。该方法利用Harris与Moravec检测器提取雷达图像上的角点特征,建立角点特征数据集;利用多链路并行卷积和Non-Local机制构建全局上下文信息提取网络,学习图像像素的全局分布特征;将全局上下文信息提取网络重复堆叠4次得到角点语义特征图,经多层感知机输出行为预测概率。仿真和实测结果表明,所提方法可以有效识别室内人体步行过程中存在的坐卧、跌倒等突发步态异常终止行为,在提升识别准确率、鲁棒性的前提下,有效控制泛化精度误差不超过6.4%。 Through-the-wall radar can penetrate walls and realize indoor human target detection.Deep learning is commonly used to extract the micro-Doppler signature of a target,which can be used to effectively identify human activities behind obstacles.However,the test accuracy of the deep-learning-based recognition methods is low with poor generalization ability when different testers are invited to generate the training set and test set.Therefore,this study proposes a method for recognition of anomalous human gait termination based on micro-Doppler corner features and Non-Local mechanism.In this method,Harris and Moravec detectors are utilized to extract the corner features of the radar image,and the corner feature dataset is established in this manner.Thereafter,multilink parallel convolutions and the Non-Local mechanism are utilized to construct the global contextual information extraction network to learn the global distribution characteristics of the image pixels.The semantic feature maps are generated by repeating four times the global contextual information extraction network.Finally,the probabilities of human activities are predicted using a multilayer perceptron.The numerical simulation and experimental results demonstrate that the proposed method can effectively identify such abnormal gait termination activities as sitting,lying down,and falling,among others,which occur in the process of indoor human walking,and successfully control the generalization accuracy error to be no more than 6.4%under the premise of increasing the recognition accuracy and robustness.
作者 杨小鹏 高炜程 渠晓东 YANG Xiaopeng;GAO Weicheng;QU Xiaodong(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
出处 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第1期68-86,共19页 Journal of Radars
基金 国家自然科学基金(61860206012) 北京理工大学青年教师学术启动计划。
关键词 穿墙雷达 人体行为识别 微多普勒特征 角点特征 神经网络 Through-the-wall radar Human activity recognition Micro-Doppler signature Corner feature Neural networks
  • 相关文献

参考文献8

二级参考文献59

  • 1Bobick A F, Davis J W. The recognition of human move- ment using temporal templates [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001,23 (3) : 257 -267. 被引量:1
  • 2Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human actions and interactions [ J ]. Multimedia Systems, 2004,10 (2) : 164-179. 被引量:1
  • 3Wang Ying, Huang Kai-qi, Tan Tie-niu. Abnormal activity recognition in Office based on rtransform[ C ]//2007 IEEE International Conference on Image Processing. 2007:341- 344. 被引量:1
  • 4Alexandros Andre Charaui, Pau Climentperez, Fr-anciso Florez Reueha. Silhouette-based human action recognition using sequence of key poses [ J ]. Pattern Recognition Let- ters, 2013,34 (15) : 1799-1807. 被引量:1
  • 5齐美彬,朱启兵,蒋建国.基于局部描述子的人体行为识别[J].计算机技术与应用,2012,38(7):123-125. 被引量:1
  • 6Niebles J C, Wang H, Li F F. Unsupervised learning of human action categories using spatial-temporal words [ J ]. International Journal of Computer Vision, 2008,79 ( 3 ) : 299 -318. 被引量:1
  • 7Dollar P, Rabaud V, Cotterll G, et al. Behavior recogni- tion via sparse spatio-temporal features [ C ]/! Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 2005 : 65-72. 被引量:1
  • 8Jolliffe I T. Principal Component Analysis(2nd) [M]. New York: Springer-Verlag, 1996. 被引量:1
  • 9David D Lewis. Native(Bayes) at forty: The independence assumption in information retrieval [ C ]// The 10th Euro- pean Conference on Machine Learning. 1998:4-15. 被引量:1
  • 10Blank M, Goreliek L, Sheehtman E, et al. Actions as space-time shapes [ C ]/! The Tenth IEEE International Conference on Computer Vision. 2005 : 1395-1402. 被引量:1

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部