期刊文献+

基于卷积神经网络的电力敏感数据泄露风险监测方法分析 被引量:1

Risk Monitoring Method for Leakage of Power Sensitive Data Based on Convolutional Neural Networks
下载PDF
导出
摘要 提出基于卷积神经网络(CNN)的电力工程造价数据异常识别方法。经过采集和查找大量数据,进行预处理和特征提取后,设计了一个包含卷积层、池化层和全连接层的CNN模型来学习和识别异常造价数据的模式。实验证明,该方法在准确性和鲁棒性方面表现优秀,具有潜在的应用前景。 This article proposes a method for identifying anomalies in power engineering cost data based on convolutional neural networks(CNN).After collecting and searching for a large amount of data,after preprocessing and feature extraction;a CNN model consisting of convolutional layer,pooling layer,and fully connected layer was designed to learn and identify patterns of abnormal cost data.Experiments have shown that this method performs well in terms of accuracy and robustness,it has potential application prospects.
作者 陈天宇 Chen Tianyu(Guangdong Power Grid Co.,Ltd.Shanwei Power Supply Bureau,Shanwei Guangdong 516600,China)
出处 《现代工业经济和信息化》 2023年第11期322-324,共3页 Modern Industrial Economy and Informationization
关键词 卷积神经网络 电力敏感数据 泄露风险监测 特征提取 convolutional neural network electricity sensitive data leakage risk monitoring feature extraction
  • 相关文献

参考文献9

二级参考文献64

共引文献62

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部