期刊文献+

基于比例特征的区域分割算法在药板缺陷检测中的研究

Region Segmentation Algorithm Based on Proportional Features for Defect Detection of Aluminum Plastic Blister Medicine Plates
下载PDF
导出
摘要 目的为解决铝塑泡罩药板图像ROI区域定位慢、精度差等问题,本文提出一种基于比例特征的泡罩区域分割算法,该算法可以快速定位并分割泡罩ROI区域,结合图像相关性特征算法对铝塑泡罩药板进行缺陷检测。方法首先通过工业相机采集药品包装生产线上的药板原始图像,接着使用Blob分析从原始图片中分离出铝塑泡罩主体部分,然后通过仿射变换将图像放置在中心区域,并使用比例特征分割算法对泡罩区域进行分割,最后通过金字塔加速的NCC算法完成缺陷检测。结果实验结果表明,基于比例特征分割后的图像平均NCC匹配时间为9 ms,在缺陷样本占比20%的实验中误检率为0.167%,漏检率为0.556%。结论通过比例特征分割出精准的泡罩ROI区域结合改进的NCC算法,在拥有较高准确率的同时大幅减少了缺陷检测时图像匹配的时间,能较好地完成铝塑泡罩药板的缺陷检测任务。 The work aims to propose a blister area segmentation algorithm based on proportional features to quickly locate and segment the blister ROI,and detect defects in aluminum plastic blister medicine plates in combination with the image correlation feature algorithm,so as to solve the problems of slow localization and poor accuracy of ROI in images of aluminum plastic blister medicine plates.Firstly,original images of medicine plates in the packaging production line were collected through an industrial camera.Then,Blob analysis was used to separate the main part of the aluminum plastic blister from the original image.Then,the image was placed in the center area through affine changes and the blister area was segmented according to the proportional feature segmentation algorithm.Finally,defect detection was completed according to the pyramid accelerated NCC algorithm.The experimental results showed that the average NCC matching time of the image based on proportional feature segmentation was 9 ms.In the experiment with 20%defect samples,the false detection rate was 0.167%and the missed detection rate was 0.556%.By the segmenting precise blister ROI through proportional features and combining them with an improved NCC algorithm,the image matching time during defect detection is significantly reduced,which can effectively complete the defect detection task of aluminum plastic blister medicine plates.
作者 颜培鑫 黄海龙 冷奎 杨泽宇 YAN Peixin;HUANG Hailong;LENG Kui;YANG Zeyu(School of Mechanical Engineering and Automation,Liaoning University of Technology,Liaoning Jinzhou 121000,China;Jinzhou Mining Machinery Group Co.,Ltd.,Liaoning Jinzhou 121000,China)
出处 《包装工程》 CAS 北大核心 2024年第1期208-214,共7页 Packaging Engineering
基金 辽宁省“揭榜挂帅”科技计划重点项目(2021JH1/10400074)。
关键词 铝塑泡罩药板 比例特征 缺陷检测 归一化互相关 aluminum plastic blister medicine plates proportional characteristics defect detection normalized cross correlation(NCC)
  • 相关文献

参考文献11

二级参考文献52

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部