摘要
为提升火电机组的供热能力及调峰能力,低压缸零出力技术受到了越来越广泛的关注。基于某300 MW纯凝机组,利用Ebsilon软件搭建了热力系统模型,并进行了供热改造后的系统建模,对比分析了低压缸零出力改造前后机组的热经济性变化,并对不同热网疏水系统布置方案下低压缸零出力机组的供热、发电性能和供电标准煤耗进行了多工况模拟计算。结果表明,低压缸零出力改造使最小供电标准煤耗降低了31.63 g/(kW·h)。各疏水系统布置方案中,最大的供热抽汽量为638.26 t/h,最小的电负荷率为23.05%,最小的供电标准煤耗为161.30 g/(kW·h)。该研究可以为低压缸零出力机组疏水系统的优化布置提供借鉴,并为零出力机组的高效运行提供指导。
In order to improve the heating capacity and peak regulation capacity of generation units,the low-pressure cylinder zero output technology has attracted more and more attention.Based on a 300 MW pure condensing unit,the thermal system model was built by Ebsilon software and the system modeling after heat supply transformation was carried out.The thermal economy changes of the unit before and after the low-pressure cylinder zero output were compared and analyzed.The heat supply,power generation performance and standard coal consumption of the low-pressure cylinder zero output unit under different layout schemes of draining system of heat network were simulated under multiple working conditions.The results show that the minimum standard coal consumption of power supply is reduced by 31.63 g/(kW·h).In each draining system layout scheme,the maximum heating extraction steam is 638.26 t/h,the minimum electrical load rate is 23.05%,and the minimum standard coal consumption for power supply is 161.30 g/(kW·h).This research can provide useful guidance for the optimal arrangement of draining system and efficient operation of the low-pressure cylinder zero-output units.
作者
刘军
李洪波
管洪军
高明
李杨
王顺
LIU Jun;LI Hongbo;GUAN Hongjun;GAO Ming;LI Yang;WANG Shun(SinopecShengli Petroleum Administration Co.Ltd,Dongying Shandong,257087;Shandong Engineering Laboratory for High-Efficiency Energy Conservation and Energy Storage Technology&Equipment(School of Energy and Power Engineering,Shandong University),Jinan Shandong 250061)
出处
《东北电力大学学报》
2023年第6期87-93,共7页
Journal of Northeast Electric Power University
基金
国家自然科学基金(51776111)
山东省重点研发计划(2019GSF109084)。
关键词
低压缸零出力
热网疏水
热经济性
Ebsilon模拟
Low-pressure cylinder zero output
Draining system of heat network
Thermal economy
Ebsilon simulation