期刊文献+

A Survey of Knowledge Graph Construction Using Machine Learning

下载PDF
导出
摘要 Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期225-257,共33页 工程与科学中的计算机建模(英文)
基金 supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032 in part by the National Natural Science Foundation of China under Grants U1836106 and 62271045 in part by the Scientific and Technological Innovation Foundation of Foshan under Grants BK21BF001 and BK20BF010。
  • 相关文献

参考文献3

二级参考文献93

  • 1TANG Jie, YAO Limin, CHEN Dewei. Multi-topic based query-oriented summarization [ C ]//Proceedings of the SI- AM International Conference on Data Mining. Sparks, USA, 2009: 1141-1152. 被引量:1
  • 2LAMIREL J C. Multi-view data analysis and concept extrac- tion methods for text [ J ]. Knowledge Organization, 2013, ~0(5) : 305-319. 被引量:1
  • 3NIA Fan, LI Huixian, and WANG Chao. Research on senti- ~ent analyzing in multi-topics texts [ J ]. Advances in Com- puter Science, Intelligent System and Environment, 2013, 105 : 581-586. 被引量:1
  • 4FU Xianghua, LIU Guo, GUO Yanyan, et al. Multi-aspect sentiment analysis for Chinese online social reviews based on Iopic modeling and HowNet lexicon [ J ]. Knowledge-Based Systems, 2013, 37: 186-195. 被引量:1
  • 5ZENG Jianping, DUAN Jiangjiao, WANG Wei, et al. Se- mantic multi-grain mixture topic model for text analysis[ J]. Expert Systems with Applications, 2011, 38: 3574-3579. 被引量:1
  • 6LLORET E. Manuel palomar text summarisation in pro- gress: a literature review [ J ]. Artificial Intelligence Re- view, 2012, 37: 1-41. 被引量:1
  • 7Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41. 被引量:1
  • 8Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250. 被引量:1
  • 9Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19. 被引量:1
  • 10Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127. 被引量:1

共引文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部