期刊文献+

基于DMPs的双机器人协同搬运轨迹的学习与泛化

Learning and Generalization of Dual-Robot Cooperative Handling Trajectory Based on Dynamic Movement Primitives
下载PDF
导出
摘要 针对双机器人协作系统执行具有强协调约束关系的仿人任务时,存在轨迹学习复杂、协调约束分析欠缺的问题,提出了基于动态运动基元(DMPs)的双机器人协同搬运轨迹学习及泛化方法。首先,从双机器人协同搬运任务出发,分析了双机器人协调约束关系,建立了双机器人运动约束模型。然后,将机器人运动轨迹解耦为位置轨迹和姿态轨迹,采用四元数实现姿态轨迹的无奇异描述,分别建立位置轨迹和姿态轨迹的动态运动基元模型,结合双机器人运动约束模型与动态运动基元模型,兼顾各自的任务要求和相对位姿约束,进而获得双机器人的运动轨迹。接着,开展了双机器人协同搬运轨迹的仿真与实验,结果表明:采用双机器人协同搬运轨迹的学习与泛化方法,当改变起、终点状态时,双机器人定姿态协同搬运的起、终点位置误差分别为0.0292mm和0.1127mm,变姿态协同搬运的起、终点位置误差分别为0.0323mm和0.1131mm,终点的四元数姿态偏差为0.0014、0.0027、0.0018、0.0030,表明该协同搬运轨迹的学习与泛化方法具有较高的运动控制精度,即使起、终点任务参数改变,泛化轨迹仍可保证目标的可达性,验证了提出的双机器人协调运动轨迹控制方法的合理性和有效性。该方法可学习人体搬运过程并能够准确泛化出新的运动轨迹,实现了双机器人的协调运动,具有重要的工程应用价值。 Aiming at the problems of complex trajectory learning and lack of coordination constraint analysis when a dual-robot collaborative system performs humanoid tasks with strong coordination constraints,this paper proposed a dual-robot cooperative handling trajectory learning and generalization method based on dynamic movement primitives(DMPs).Firstly,starting from the dual-robot cooperative handling task,the coordination constraints of the dual-robot were analyzed,and the motion constraint model of the dual-robot was established.Then,the robot motion trajectory was decoupled into position trajectory and orientation trajectory,and the quaternion was used to realize the non-singular description of the orientation trajectory.And the dynamic movement primitives model of position trajectory and orientation trajectory were established respectively.They were combined with the dual robot motion constraint model and DMPs model,and the dual-robot movement trajectory was obtained,taking into account their respective task requirements and relative pose constraints.Finally,the simulation and experiments of the cooperative handling trajectory of the two robots were carried out.The results show that:using the learning and generalization method of the dual-robot cooperative handling trajectory,when the starting and ending states are changed,the position errors of start point and end point of the dual-robot cooperative handling with the fixed orientation are 0.0292 mm and 0.1127 mm respectively;the position errors of start point and end point of variable orientation coordinated handling are 0.0323 mm and 0.1131 mm respectively;and the quaternion orientation errors of the end point are 0.0014,0.0027,0.0018,0.0030,indicating that the cooperative handling trajectory learning and generalization method has high motion control accuracy;even if the task parameters of the starting and ending are changed,the generalized trajectory can still ensure the accessibility of the target,which verified the scientificity and effectiveness of the propo
作者 曹学鹏 王德硕 冯艳丽 樊豪 张弓 张新荣 赵睿英 CAO Xuepeng;WANG Deshuo;FENG Yanli;FAN Hao;ZHANG Gong;ZHANG Xinrong;ZHAO Ruiying(Institute of Mechatronics and Hydraulics,Chang’an University,Xi’an 710064,Shaanxi,China;Xi’an Aerospace Times Precision Electromechanical Company Limited,Xi’an 710100,Shaanxi,China;Guangzhou Institute of Advanced Technology,Chinese Academy of Science,Guangzhou 511458,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第12期9-20,共12页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金面上项目(62073092) 陕西省重点研发计划项目(2021ZDLGY09-02)。
关键词 动态运动基元 双机器人协同 轨迹学习 协调约束 四元数 dynamic movement primitive dual-robot collaboration trajectory learning coordination constraint quaternion
  • 相关文献

参考文献4

二级参考文献24

  • 1刘环,钱堃,桂博兴,马旭东.基于多演示动作基元参数化学习的机器人任务泛化[J].机器人,2019,41(5):574-582. 被引量:4
  • 2翟敬梅,应灿,张铁,徐晓.双机器人协同焊接的轨迹优化[J].焊接学报,2015,36(1):91-95. 被引量:16
  • 3Kosuge K, Ishikawa J, Furuta K, et al. Control of single-master multi-slave manipulator system using VIM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1990: 1172-1177. 被引量:1
  • 4Zhu W H. On adaptive synchronization control of coordinated multirobots with flexible/rigid constraints[J]. IEEE Transactions on Robotics, 2005, 21(3): 520-525. 被引量:1
  • 5Tavasoli A, Eghtesad M, Jafarian H. Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam[J]. Robotics and Autonomous Systems, 2009, 57(2): 212-221. 被引量:1
  • 6Cook G E, Andersen K, Zein-Sabattou S, et al. Multiple-robot programming for coordinated motion, end-effector calibration, and part localization[C]//Conference Record of the IEEE Industry Applications Society Annual Meeting. Piscataway, NJ, USA: IEEE, 1989: 1669-1674. 被引量:1
  • 7Agapakis J E, Katz J M, Pieper D L. Programming and control of multiple robotic devices in coordinated motion[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1990: 362-367. 被引量:1
  • 8Jouaneh M K, Wang Z, Dornfeld D A. Trajectory planning for coordinated motion of a robot and a positioning table. I. Path specification[J]. IEEE Transactions on Robotics and Automation, 1990, 6(6): 735-745. 被引量:1
  • 9Ahmad S, Luo S. Coordinated motion control of multi- ple robotic devices for welding and redundancy coordination through constrained optimization in Cartesian space[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4): 409-417. 被引量:1
  • 10Pashkevich A E Dolgui A B, Semkin K I. Kinematic aspects of a robot-positioner system in an arc welding application[J]. Control Engineering Practice, 2003, 11(6): 633-647. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部