摘要
开发价格便宜、高效稳定的析氢反应(HER)电催化剂是实现电解水制氢技术工业规模化的关键问题之一。本文利用低温电化学沉积法成功地在碳布表面原位生长了Co/NiCoP异质纳米结构的自支撑催化电极,结合表征技术、以1mol/LNaOH溶液为碱性电解质的理论计算和以三电极体系电化学工作站为基础的实验测试对该材料进行了HER性能评估。结果表明,Co/NiCoP异质结构催化剂具有优异的析氢性能,在碱性介质中,获取10mA/cm^(2)的催化电流密度所需要的过电位仅为54mV,Tafel斜率为78.5mV/dec。这主要归因于:①Co/NiCoP纳米催化剂在碳布表面良好的分散性增加了暴露的催化活性位点数;②异质结构的存在促进了Co与NiCoP之间电子的相互作用,加快了电荷转移速率并提高了材料的导电性;③理论计算表明,Co/NiCoP异质结构的构建能有效地降低水的解离势垒,促进水的解离,进而加快HER动力学反应过程。因此,Co/NiCoP纳米异质结构催化剂的构建丰富了非贵金属纳米材料在电解水制氢领域的应用。
The development of cost-effective and efficient electrocatalysts for hydrogen evolution reaction(HER)is one of the key factors to meet the industrial-scale application demand.Herein,heterostructure Co/NiCoP nanoparticles grown on carbon cloth were successfully fabricated via low temperature electrochemical deposition method,and characterized and theoretically calculated.Moreover,the HER performance of the obtained samples were investigated in 1mol/L NaOH alkaline electrolyte with a three-electrode electrochemical workstation.The heterostructure Co/NiCoP composite showed excellent catalytic performance,with a low overpotential of 54mV at a current density of 10mA/cm^(2) and Tafel slope of 78.5mV/dec.Based on the theoretical calculations and characterized results,the high electrocatalytic activity of Co/NiCoP was attributed to the following three points:①The well dispersed Co/NiCoP nanoparticles on carbon cloth increased the exposure of surface active sites;②The electron interaction Engineering Progress,2023,42(12):6345-6353.between Co and NiCoP was promoted via heterostructure,which accelerated the charge transfer rate and increased the conductivity of the material;③The construction of Co/NiCoP heterostructure boosted the alkaline HER kinetics by accelerating the water dissociation step.Therefore,the construction of Co/NiCoP nano-heterogeneous catalysts has enriched the applications of non-noble metal based electrocatalysts in electrolysis of water.
作者
姜楠
李佳优
蒋博龙
高伟俊
谭明
JIANG Nan;LI Jiayou;JIANG Boong;GAO Weijun;TAN Ming(College of Architecture and Urban Planning,Qingdao University of Technology,Qingdao 266033,Shandong,China;School of Environmental and Municipal Engineering,Qingdao University of Technology,Qingdao 266033,Shandong,China;Faculty of Environmental Engineering,The University of Kitakyushu,Kitakyushu 808-0135,Japan)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2023年第12期6345-6353,共9页
Chemical Industry and Engineering Progress
关键词
制氢
催化剂
纳米结构
复合材料
hydrogen production
catalyst
nanostructure
composites