摘要
结合微细粒浮选过程强化理论,以江西铜业股份有限公司武山铜矿选铜尾矿中细粒级黄铁矿为研究对象,使用计算流体力学仿真方法对常规搅拌桶和高剪切改质机内部流场特征进行对比分析,同时开展半工业尺度的搅拌调浆浮选试验,研究了不同调浆方式和强度对细粒级黄铁矿浮选的影响规律。研究结果表明:高剪切改质机内湍动能的耗散率高且分布更为均匀,对武山铜矿细粒级黄铁矿起到了良好的活化改性效果,同常规搅拌桶相比硫回收率提高了9.76个百分点,且随着搅拌强度的提高,硫的回收率明显提高,尤其是细粒级硫可得到有效回收。
Combined with the strengthening theory of fine particle flotation process,taking fine-grained pyrite in the tailings of Wushan Copper Mine of Jiangxi Copper Co.,Ltd.as the research object,the internal flow field characteristics of conventional conditioning stirred tank and high shear modifier were qualitatively compared and analyzed by computational fluid dynamics simulation method,and at the same time,semi-industrial-scale conditioning and pulp flotation experiments were carried out,and the influence of different mix‐ing methods and grout intensity on fine-grained pyrite flotation was studied.The results indicate a high dissipation rate of turbulent ki‐netic energy and a more uniform distribution,which effectively activates and modifies the fine-grade pyrite in Wushan Copper mine.Compared to conventional stirring buckets,the sulfur recovery rate can be increased by 9.76 percentage points.Furthermore,an en‐hanced stirring intensity significantly improves the sulfur recovery,particularly for recovering fine-grade sulfur.
作者
吴书明
徐乾德
李恒欠
阮华东
曾学飞
董泽林
WU Shuming;XU Qiande;LI Hengqian;RUAN Huadong;ZEGN Xuefei;DONG Zein(Jiangxi Copper Corporation Limited,Nanchang 330096,China;School of Civil and Resource Engineering,University of Science and Technology Beijing,Key Laboratory of Ministry of Education for Efficient Mining and Safe-ty of Metal Mines,Beijing 100083,China;Beijing Engineering Research Center on Efficient and Energy Conser-vation Equipment of Mineral Processing,BGRIMM Machinery and Automation Technology Co.,Ltd.,Beijing 100160,China;Wushan Copper Mine of Jiangxi Copper Co.,Ltd.,Ruichang 332204,China)
出处
《铜业工程》
CAS
2023年第6期160-165,共6页
Copper Engineering
基金
提高武山铜矿细粒级硫回收率试验研究项目(WTYJ2022005)资助。
关键词
微细粒浮选
细粒黄铁矿
高剪切搅拌
改质机
硫回收率
micro-fine particle flotation
fine-grained pyrite
high shear agitation
surface modifier
recovery rate