期刊文献+

融合工况预测的燃料电池汽车里程自适应等效氢耗最小控制策略 被引量:6

Trip distance adaptive equivalent hydrogen consumption minimization strategy for fuelcell electric vehicles integrating driving cycle prediction
下载PDF
导出
摘要 为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性. The environment pollution and petroleum problems,which are increasingly becoming serious,have caused the vehicle industry to transition into a low-carbon and energy-saving industry.During processes,plug-in fuel-cell electric vehicles(PFCEVs) play an important role due to their advantages of rapid fueling,high energy density and efficiency,low operating temperature,and zero onboard emissions.PFCEVs use high-capacity rechargeable batteries to avoid working in low-efficiency areas.However,a robust energy management strategy that can achieve reliable energy distribution by regulating the output power of the fuel cell and battery within the hybrid powertrain merits further investigation.Considering the close relationship between the driving cycle,state of charge(SOC),equivalent factor,and hydrogen consumption,a trip distance adaptive equivalent consumption minimum strategy integrating driving cycle prediction is proposed.A backpropagation-based neural network is used to predict short-term vehicle velocity and analyze future changes in vehicle demand power.Planning a path to the destination with the help of the global positioning system,the intelligent transportation system can also obtain traffic flow information for the entire trip.The equivalent factor is dynamically corrected in real time using the driving distance and SOC to realize the adaptability of the energy management strategy.Finally,the velocity prediction sequence is combined with the objective function.The sequential quadratic programming algorithm is used to optimize the equivalent hydrogen consumption of the objective function and to obtain the distributed power of the fuel cell and battery.The vehicle simulation model is built and compared with a traditional energy management strategy based on MATLAB/Simulink software.The simulation results show that the driving cycle prediction algorithm based on the backpropagation-based neural network predicts future short-term conditions better,with a 12.5% higher accuracy than the Markov method.The proposed energ
作者 林歆悠 叶锦泽 王召瑞 LIN Xinyou;YE Jinze;WANG Zhaorui(College of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350002,China)
出处 《工程科学学报》 EI CSCD 北大核心 2024年第2期376-384,共9页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(52272389,51505086) 载运工具与装备教育部重点实验室开放课题(KLCE2022-08) 安徽工程大学检测技术与节能装置安徽省重点实验室开放研究基金资助项目(JCKJ2021A04)。
关键词 燃料电池汽车 能量管理策略 等效消耗最小策略 工况预测 反向传播神经网络 fuel cell electric vehicle energy management strategy equivalent consumption minimum strategy driving cycle prediction BP neural network
  • 相关文献

参考文献8

二级参考文献79

共引文献177

同被引文献54

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部