期刊文献+

一种用于天基低轨卫星网络边缘计算的GA-DDPG卸载算法 被引量:2

GA-DDPG unloading algorithm for edge computing in space-based LEO satellite networks
下载PDF
导出
摘要 低轨卫星网络是第六代移动通信系统(6G)网络的重要组成部分,弥补了地面基站覆盖的盲区.由于星上计算能力和电池容量受限,导致任务出现时延长和能耗高的问题,因此在低轨卫星网络中引入边缘计算,边缘计算的一项关键技术就是计算卸载.针对计算卸载过程中星间环境动态变化和高维动作空间的问题,提出一种基于遗传算法(GA)和深度确定性策略梯度(DDPG)的天基低轨卫星网络边缘计算卸载算法——GA-DDPG算法.卫星边缘计算环境的不断变化会导致DDPG奖励稀疏和探索性不足,将GA引入到DDPG算法中,首先,利用GA的选择算子使DDPG算法能够适应不断变化的卫星环境;然后,针对动作空间维度变大导致DDPG算法收敛不稳定的问题,利用GA种群的多样化探索和种群的冗余提升DDPG算法收敛的稳定性.仿真结果表明,GA-DDPG卸载算法能够降低天基低轨卫星网络计算负载,且时延和能耗均低于DDPG卸载算法和GA卸载算法.与DDPG卸载算法相比,GA-DDPG卸载算法还能提升收敛速度和稳定性. Low-earth orbit(LEO)satellite networks are an important part of the sixth-generation mobile communication system(6G)network,which overcomes the blind spots in ground-based station coverage.However,the limited onboard computing capability and battery capacity cause the problems of extended mission duration and high-energy consumption;therefore,edge computing is introduced in LEO satellite networks,and its key technology is computational offloading.To address the problems of dynamic changes in the intersatellite environment and high-dimensional action space during computational offloading,we propose a genetic algorithm(GA)and deep deterministic policy gradient(DDPG)-based offloading algorithm for edge computing in space-based LEO satellite networks—the GA-DDPG algorithm.The constant change in a satellite edge computing environment will result in sparse rewards(system overhead)and a lack of DDPG exploration.In this study,a GA is introduced into the DDPG algorithm.First,the selection operator of the GA is used to enable the DDPG algorithm to adapt to a changing satellite environment.Second,to address the problem of unstable convergence of the DDPG algorithm owing to the increasing dimension of the action space,the diversity exploration and redundancy of the GA population are used to improve the stability of the convergence of the DDPG algorithm.In this study,a system model,including a space-based LEO satellite constellation structure,mission model,computational model,and load model,is constructed;in addition,a system overhead,weighted by the residual rate of battery energy of edge satellites,is designed to model the problems of minimization of mission delay,minimization of mission energy consumption,and optimization of computational resource allocation as a Markov process.First,the offloading algorithm obtains edge satellites that are visible to the local satellites by analyzing the constraints for establishing links between the satellites.Second,the channel is modeled,and the intersatellite path loss and Doppler s
作者 史栋元 王丽娜 SHI Dongyuan;WANG Lina(Department of Communication Engineering,School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处 《工程科学学报》 EI CSCD 北大核心 2024年第2期343-353,共11页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(61701020)。
关键词 低轨卫星边缘计算 任务卸载 遗传算法 深度强化学习 星间链路 LEO satellite edge computing task unloading genetic algorithm deeply strengthen learning inter-satellite link
  • 相关文献

参考文献13

二级参考文献73

共引文献98

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部