摘要
转盘离心雾化是一种制备球形金属粉末的重要方法,在高熔点金属粉末制备中,需要对转盘结构本身和下端的驱动电机进行热防护。采用数值模拟的方法,研究熔融铝液的转盘离心雾化流场模型的耦合传热问题,给出不同材料、不同转盘结构条件下的转盘温度场分布。为提高冷却效率,发展带有肋片的新型转盘热防护结构,分析肋片结构的散热机理,对比不同肋片位置、肋片厚度和肋片直径的热防护效果。研究结果表明:大热容和低导热系数的金属材料转盘的底端温度更低;肋片和转盘之间形成的环形氮气流场是提高转轴散热能力的主要原因;肋片位置越低,直径越大,厚度越厚,转轴底端温度越低,冷却效果越好。
Rotating disk atomization is an important method to prepare spherical metal powder.In the preparation of high-melting-point metal powders,by this method,thermal protection is required for both the turntable structure itself and the lower-end driving motor.The coupled heat transfer problem of centrifugal atomization flow field model of molten aluminum was analyzed by numerical simulation,and the temperature field distribution of disk under different materials and disk structures was given.To improve the cooling efficiency,a new type of rotary disk thermal protection structure with fins was developed.The heat dissipation mechanism of the fin structure was analyzed,and the thermal protection effects of different fin positions,fin thickness and fin diameter were compared.The results revealed that the metal rotating shaft with larger specific heat capacity and lower thermal conductivity has lower temperature at its bottom.Moreover,the annular nitrogen flow field formed between the fin and the rotary disk is the main reason to improve the heat dissipation capacity of the rotating shaft.Finally,the lower position the fins,the larger diameter,and the thicker the thickness,the lower the temperature at the bottom of the shaft,resulting in a better cooling effect.
作者
彭磊
李龙
赵伟
PENG Lei;LI Long;ZHAO Wei(State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2023年第12期3456-3466,共11页
Journal of Beijing University of Aeronautics and Astronautics
基金
中国科学院力学研究所高温气体动力学国家重点实验室青年基金(QN20210004)。
关键词
转盘离心雾化
流固热耦合
热防护
数值模拟
肋片
rotating disk atomization
fluid-heat-solid coupling
thermal protection
numerical simulation
fin